-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathdataset.py
459 lines (428 loc) · 19.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import os
from PIL import Image
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
"""
Implementation of Chinese Sign Language Dataset(50 signers with 5 times)
"""
class CSL_Isolated(Dataset):
def __init__(self, data_path, label_path, frames=16, num_classes=500, train=True, transform=None):
super(CSL_Isolated, self).__init__()
self.data_path = data_path
self.label_path = label_path
self.train = train
self.transform = transform
self.frames = frames
self.num_classes = num_classes
self.signers = 50
self.repetition = 5
if self.train:
self.videos_per_folder = int(0.8 * self.signers * self.repetition)
else:
self.videos_per_folder = int(0.2 * self.signers * self.repetition)
self.data_folder = []
try:
obs_path = [os.path.join(self.data_path, item) for item in os.listdir(self.data_path)]
self.data_folder = sorted([item for item in obs_path if os.path.isdir(item)])
except Exception as e:
print("Something wrong with your data path!!!")
raise
self.labels = {}
try:
label_file = open(self.label_path, 'r')
for line in label_file.readlines():
line = line.strip()
line = line.split('\t')
self.labels[line[0]] = line[1]
except Exception as e:
raise
def read_images(self, folder_path):
assert len(os.listdir(folder_path)) >= self.frames, "Too few images in your data folder: " + str(folder_path)
images = []
start = 1
step = int(len(os.listdir(folder_path))/self.frames)
for i in range(self.frames):
image = Image.open(os.path.join(folder_path, '{:06d}.jpg').format(start+i*step)) #.convert('L')
if self.transform is not None:
image = self.transform(image)
images.append(image)
images = torch.stack(images, dim=0)
# switch dimension for 3d cnn
images = images.permute(1, 0, 2, 3)
# print(images.shape)
return images
def __len__(self):
return self.num_classes * self.videos_per_folder
def __getitem__(self, idx):
top_folder = self.data_folder[int(idx/self.videos_per_folder)]
selected_folders = [os.path.join(top_folder, item) for item in os.listdir(top_folder)]
selected_folders = sorted([item for item in selected_folders if os.path.isdir(item)])
if self.train:
selected_folder = selected_folders[idx%self.videos_per_folder]
else:
selected_folder = selected_folders[idx%self.videos_per_folder + int(0.8*self.signers*self.repetition)]
images = self.read_images(selected_folder)
# print(selected_folder, int(idx/self.videos_per_folder))
# print(self.labels['{:06d}'.format(int(idx/self.videos_per_folder))])
# label = self.labels['{:06d}'.format(int(idx/self.videos_per_folder))]
label = torch.LongTensor([int(idx/self.videos_per_folder)])
return {'data': images, 'label': label}
def label_to_word(self, label):
if isinstance(label, torch.Tensor):
return self.labels['{:06d}'.format(label.item())]
elif isinstance(label, int):
return self.labels['{:06d}'.format(label)]
"""
Implementation of CSL Skeleton Dataset
"""
class CSL_Skeleton(Dataset):
joints_index = {'SPINEBASE': 0, 'SPINEMID': 1, 'NECK': 2, 'HEAD': 3, 'SHOULDERLEFT':4,
'ELBOWLEFT': 5, 'WRISTLEFT': 6, 'HANDLEFT': 7, 'SHOULDERRIGHT': 8,
'ELBOWRIGHT': 9, 'WRISTRIGHT': 10, 'HANDRIGHT': 11, 'HIPLEFT': 12,
'KNEELEFT': 13, 'ANKLELEFT': 14, 'FOOTLEFT': 15, 'HIPRIGHT': 16,
'KNEERIGHT': 17, 'ANKLERIGHT': 18, 'FOOTRIGHT': 19, 'SPINESHOULDER': 20,
'HANDTIPLEFT': 21, 'THUMBLEFT': 22, 'HANDTIPRIGHT': 23, 'THUMBRIGHT': 24}
def __init__(self, data_path, label_path, frames=16, num_classes=500, selected_joints=None, split_to_channels=False, train=True, transform=None):
super(CSL_Skeleton, self).__init__()
self.data_path = data_path
self.label_path = label_path
self.frames = frames
self.num_classes = num_classes
self.selected_joints = selected_joints
self.split_to_channels = split_to_channels
self.train = train
self.transform = transform
self.signers = 50
self.repetition = 5
if self.train:
self.txt_per_folder = int(0.8 * self.signers * self.repetition)
else:
self.txt_per_folder = int(0.2 * self.signers * self.repetition)
self.data_folder = []
try:
obs_path = [os.path.join(self.data_path, item) for item in os.listdir(self.data_path)]
self.data_folder = sorted([item for item in obs_path if os.path.isdir(item)])
except Exception as e:
print("Something wrong with your data path!!!")
raise
self.labels = {}
try:
label_file = open(self.label_path, 'r')
for line in label_file.readlines():
line = line.strip()
line = line.split('\t')
self.labels[line[0]] = line[1]
except Exception as e:
raise
def read_file(self, txt_path):
txt_file = open(txt_path, 'r')
all_skeletons = []
for line in txt_file.readlines():
line = line.split(' ')
skeleton = [int(item) for item in line if item is not '\n']
selected_x = []
selected_y = []
# select specific joints
if self.selected_joints is not None:
for joint in self.selected_joints:
assert joint in self.joints_index, 'JOINT ' + joint + ' DONT EXIST!!!'
selected_x.append(skeleton[2*self.joints_index[joint]])
selected_y.append(skeleton[2*self.joints_index[joint]+1])
else:
for i in range(len(skeleton)):
if i % 2 == 0:
selected_x.append(skeleton[i])
else:
selected_y.append(skeleton[i])
# print(selected_x, selected_y)
if self.split_to_channels:
selected_skeleton = torch.FloatTensor([selected_x, selected_y])
else:
selected_skeleton = torch.FloatTensor(selected_x + selected_y)
# print(selected_skeleton.shape)
if self.transform is not None:
selected_skeleton = self.transform(selected_skeleton)
all_skeletons.append(selected_skeleton)
# print(all_skeletons)
skeletons = []
start = 0
step = int(len(all_skeletons)/self.frames)
for i in range(self.frames):
skeletons.append(all_skeletons[start+i*step])
skeletons = torch.stack(skeletons, dim=0)
# print(skeletons.shape)
return skeletons
def __len__(self):
return self.num_classes * self.txt_per_folder
def __getitem__(self, idx):
top_folder = self.data_folder[int(idx/self.txt_per_folder)]
selected_txts = [os.path.join(top_folder, item) for item in os.listdir(top_folder)]
selected_txts = sorted([item for item in selected_txts if item.endswith('.txt')])
if self.train:
selected_txt = selected_txts[idx%self.txt_per_folder]
else:
selected_txt = selected_txts[idx%self.txt_per_folder + int(0.8*self.signers*self.repetition)]
# print(selected_txt)
data = self.read_file(selected_txt)
label = torch.LongTensor([int(idx/self.txt_per_folder)])
return {'data': data, 'label': label}
def label_to_word(self, label):
if isinstance(label, torch.Tensor):
return self.labels['{:06d}'.format(label.item())]
elif isinstance(label, int):
return self.labels['{:06d}'.format(label)]
"""
Implementation of CSL Continuous Dataset(Word Level)
"""
class CSL_Continuous(Dataset):
def __init__(self, data_path, dict_path, corpus_path, frames=128, train=True, transform=None):
super(CSL_Continuous, self).__init__()
self.data_path = data_path
self.dict_path = dict_path
self.corpus_path = corpus_path
self.frames = frames
self.train = train
self.transform = transform
self.num_sentences = 100
self.signers = 50
self.repetition = 5
if self.train:
self.videos_per_folder = int(0.8 * self.signers * self.repetition)
else:
self.videos_per_folder = int(0.2 * self.signers * self.repetition)
# dictionary
self.dict = {'<pad>': 0, '<sos>': 1, '<eos>': 2}
self.output_dim = 3
try:
dict_file = open(self.dict_path, 'r')
for line in dict_file.readlines():
line = line.strip().split('\t')
# word with multiple expressions
if '(' in line[1] and ')' in line[1]:
for delimeter in ['(', ')', '、']:
line[1] = line[1].replace(delimeter, " ")
words = line[1].split()
else:
words = [line[1]]
# print(words)
for word in words:
self.dict[word] = self.output_dim
self.output_dim += 1
except Exception as e:
raise
# img data
self.data_folder = []
try:
obs_path = [os.path.join(self.data_path, item) for item in os.listdir(self.data_path)]
self.data_folder = sorted([item for item in obs_path if os.path.isdir(item)])
except Exception as e:
raise
# corpus
self.corpus = {}
self.unknown = set()
try:
corpus_file = open(self.corpus_path, 'r')
for line in corpus_file.readlines():
line = line.strip().split()
sentence = line[1]
raw_sentence = (line[1]+'.')[:-1]
paired = [False for i in range(len(line[1]))]
# print(id(raw_sentence), id(line[1]), id(sentence))
# pair long words with higher priority
for token in sorted(self.dict, key=len, reverse=True):
index = raw_sentence.find(token)
# print(index, line[1])
if index != -1 and not paired[index]:
line[1] = line[1].replace(token, " "+token+" ")
# mark as paired
for i in range(len(token)):
paired[index+i] = True
# add sos
tokens = [self.dict['<sos>']]
for token in line[1].split():
if token in self.dict:
tokens.append(self.dict[token])
else:
self.unknown.add(token)
# add eos
tokens.append(self.dict['<eos>'])
self.corpus[line[0]] = tokens
except Exception as e:
raise
# add padding
length = [len(tokens) for key, tokens in self.corpus.items()]
self.max_length = max(length)
# print(max(length))
for key, tokens in self.corpus.items():
if len(tokens) < self.max_length:
tokens.extend([self.dict['<pad>']]*(self.max_length-len(tokens)))
# print(self.corpus)
# print(self.unknown)
def read_images(self, folder_path):
assert len(os.listdir(folder_path)) >= self.frames, "Too few images in your data folder: " + str(folder_path)
images = []
start = 1
step = int(len(os.listdir(folder_path))/self.frames)
for i in range(self.frames):
image = Image.open(os.path.join(folder_path, '{:06d}.jpg').format(start+i*step)) #.convert('L')
if self.transform is not None:
image = self.transform(image)
images.append(image)
images = torch.stack(images, dim=0)
# switch dimension
images = images.permute(1, 0, 2, 3)
# print(images.shape)
return images
def __len__(self):
return self.num_sentences * self.videos_per_folder
def __getitem__(self, idx):
top_folder = self.data_folder[int(idx/self.videos_per_folder)]
selected_folders = [os.path.join(top_folder, item) for item in os.listdir(top_folder)]
selected_folders = sorted([item for item in selected_folders if os.path.isdir(item)])
if self.train:
selected_folder = selected_folders[idx%self.videos_per_folder]
else:
selected_folder = selected_folders[idx%self.videos_per_folder + int(0.8*self.signers*self.repetition)]
images = self.read_images(selected_folder)
# print(selected_folder, int(idx/self.videos_per_folder))
# print(self.corpus['{:06d}'.format(int(idx/self.videos_per_folder))])
tokens = torch.LongTensor(self.corpus['{:06d}'.format(int(idx/self.videos_per_folder))])
return images, tokens
"""
Implementation of CSL Continuous Dataset(Character Level)
"""
class CSL_Continuous_Char(Dataset):
def __init__(self, data_path, corpus_path, frames=128, train=True, transform=None):
super(CSL_Continuous_Char, self).__init__()
self.data_path = data_path
self.corpus_path = corpus_path
self.frames = frames
self.train = train
self.transform = transform
self.num_sentences = 100
self.signers = 50
self.repetition = 5
if self.train:
self.videos_per_folder = int(0.8 * self.signers * self.repetition)
else:
self.videos_per_folder = int(0.2 * self.signers * self.repetition)
# dictionary
self.dict = {'<pad>': 0, '<sos>': 1, '<eos>': 2}
self.output_dim = 3
try:
dict_file = open(self.corpus_path, 'r')
for line in dict_file.readlines():
line = line.strip().split()
sentence = line[1]
for char in sentence:
if char not in self.dict:
self.dict[char] = self.output_dim
self.output_dim += 1
except Exception as e:
raise
# img data
self.data_folder = []
try:
obs_path = [os.path.join(self.data_path, item) for item in os.listdir(self.data_path)]
self.data_folder = sorted([item for item in obs_path if os.path.isdir(item)])
except Exception as e:
raise
# corpus
self.corpus = {}
self.unknown = set()
try:
corpus_file = open(self.corpus_path, 'r')
for line in corpus_file.readlines():
line = line.strip().split()
sentence = line[1]
raw_sentence = (line[1]+'.')[:-1]
paired = [False for i in range(len(line[1]))]
# print(id(raw_sentence), id(line[1]), id(sentence))
# pair long words with higher priority
for token in sorted(self.dict, key=len, reverse=True):
index = raw_sentence.find(token)
# print(index, line[1])
if index != -1 and not paired[index]:
line[1] = line[1].replace(token, " "+token+" ")
# mark as paired
for i in range(len(token)):
paired[index+i] = True
# add sos
tokens = [self.dict['<sos>']]
for token in line[1].split():
if token in self.dict:
tokens.append(self.dict[token])
else:
self.unknown.add(token)
# add eos
tokens.append(self.dict['<eos>'])
self.corpus[line[0]] = tokens
except Exception as e:
raise
# add padding
length = [len(tokens) for key, tokens in self.corpus.items()]
self.max_length = max(length)
# print(max(length))
for key, tokens in self.corpus.items():
if len(tokens) < self.max_length:
tokens.extend([self.dict['<pad>']]*(self.max_length-len(tokens)))
# print(self.corpus)
# print(self.unknown)
def read_images(self, folder_path):
assert len(os.listdir(folder_path)) >= self.frames, "Too few images in your data folder: " + str(folder_path)
images = []
start = 1
step = int(len(os.listdir(folder_path))/self.frames)
for i in range(self.frames):
image = Image.open(os.path.join(folder_path, '{:06d}.jpg').format(start+i*step)) #.convert('L')
if self.transform is not None:
image = self.transform(image)
images.append(image)
images = torch.stack(images, dim=0)
# switch dimension
images = images.permute(1, 0, 2, 3)
# print(images.shape)
return images
def __len__(self):
return self.num_sentences * self.videos_per_folder
def __getitem__(self, idx):
top_folder = self.data_folder[int(idx/self.videos_per_folder)]
selected_folders = [os.path.join(top_folder, item) for item in os.listdir(top_folder)]
selected_folders = sorted([item for item in selected_folders if os.path.isdir(item)])
if self.train:
selected_folder = selected_folders[idx%self.videos_per_folder]
else:
selected_folder = selected_folders[idx%self.videos_per_folder + int(0.8*self.signers*self.repetition)]
images = self.read_images(selected_folder)
# print(selected_folder, int(idx/self.videos_per_folder))
# print(self.corpus['{:06d}'.format(int(idx/self.videos_per_folder))])
tokens = torch.LongTensor(self.corpus['{:06d}'.format(int(idx/self.videos_per_folder))])
return images, tokens
# Test
if __name__ == '__main__':
transform = transforms.Compose([transforms.Resize([128, 128]), transforms.ToTensor()])
# dataset = CSL_Isolated(data_path="/home/haodong/Data/CSL_Isolated/color_video_125000",
# label_path='/home/haodong/Data/CSL_Isolated/dictionary.txt', transform=transform) # print(len(dataset))
# print(dataset[1000]['images'].shape)
# dataset = CSL_Skeleton(data_path="/home/haodong/Data/CSL_Isolated/xf500_body_depth_txt",
# label_path="/home/haodong/Data/CSL_Isolated/dictionary.txt", selected_joints=['SPINEBASE', 'SPINEMID', 'HANDTIPRIGHT'], split_to_channels=True)
# print(dataset[1000])
# label = dataset[1000]['label']
# print(dataset.label_to_word(label))
# dataset[1000]
dataset = CSL_Continuous(
data_path="/home/haodong/Data/CSL_Continuous/color",
dict_path="/home/haodong/Data/CSL_Continuous/dictionary.txt",
corpus_path="/home/haodong/Data/CSL_Continuous/corpus.txt",
train=True, transform=transform
)
# dataset = CSL_Continuous_Char(
# data_path="/home/haodong/Data/CSL_Continuous/color",
# corpus_path="/home/haodong/Data/CSL_Continuous/corpus.txt",
# train=True, transform=transform
# )
print(len(dataset))
images, tokens = dataset[1000]
print(images.shape, tokens)
print(dataset.output_dim)