-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtools.py
150 lines (133 loc) · 5.23 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
import torchvision.utils as utils
import cv2
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
def get_label_and_pred(model, dataloader, device):
all_label = []
all_pred = []
with torch.no_grad():
for batch_idx, data in enumerate(test_loader):
# get the inputs and labels
inputs, labels = data['data'].to(device), data['label'].to(device)
# forward
outputs = model(inputs)
if isinstance(outputs, list):
outputs = outputs[0]
# collect labels & prediction
prediction = torch.max(outputs, 1)[1]
all_label.extend(labels.squeeze())
all_pred.extend(prediction)
# Compute accuracy
all_label = torch.stack(all_label, dim=0)
all_pred = torch.stack(all_pred, dim=0)
all_label = all_label.squeeze().cpu().data.squeeze().numpy()
all_pred = all_pred.cpu().data.squeeze().numpy()
return all_label, all_pred
def plot_confusion_matrix(model, dataloader, device, save_path='confmat.png', normalize=True):
# Get prediction
all_label, all_pred = get_label_and_pred(model, dataloader, device)
confmat = confusion_matrix(all_label, all_pred)
# Normalize the matrix
if normalize:
confmat = confmat.astype('float') / confmat.sum(axis=1)[:, np.newaxis]
# Draw matrix
plt.figure(figsize=(20,20))
# confmat = np.random.rand(100,100)
plt.imshow(confmat, interpolation='nearest', cmap=plt.cm.Blues)
plt.colorbar()
# Add ticks
ticks = np.arange(100)
plt.xticks(ticks, fontsize=8)
plt.yticks(ticks, fontsize=8)
plt.grid(True)
# Add title & labels
plt.title('Confusion matrix', fontsize=20)
plt.xlabel('Predicted label', fontsize=20)
plt.ylabel('True label', fontsize=20)
# Save figure
plt.savefig(save_path)
# Ranking
sorted_index = np.diag(confmat).argsort()
for i in range(10):
# print(type(sorted_index[i]))
print(test_set.label_to_word(int(sorted_index[i])), confmat[sorted_index[i]][sorted_index[i]])
# Save to csv
np.savetxt('matrix.csv', confmat, delimiter=',')
def visualize_attn(I, c):
# Image
img = I.permute((1,2,0)).cpu().numpy()
# Heatmap
N, C, H, W = c.size()
a = F.softmax(c.view(N,C,-1), dim=2).view(N,C,H,W)
up_factor = 128/H
# print(up_factor, I.size(), c.size())
if up_factor > 1:
a = F.interpolate(a, scale_factor=up_factor, mode='bilinear', align_corners=False)
attn = utils.make_grid(a, nrow=4, normalize=True, scale_each=True)
attn = attn.permute((1,2,0)).mul(255).byte().cpu().numpy()
attn = cv2.applyColorMap(attn, cv2.COLORMAP_JET)
attn = cv2.cvtColor(attn, cv2.COLOR_BGR2RGB)
# Add the heatmap to the image
vis = 0.6 * img + 0.4 * attn
return torch.from_numpy(vis).permute(2,0,1)
def plot_attention_map(model, dataloader, device):
# Summary writer
writer = SummaryWriter("runs/attention_{:%Y-%m-%d_%H-%M-%S}".format(datetime.now()))
model.eval()
with torch.no_grad():
for batch_idx, data in enumerate(dataloader):
# get images
inputs = data['data'].to(device)
if batch_idx == 0:
images = inputs[0:16,:,:,:,:]
I = utils.make_grid(images[:,:,0,:,:], nrow=4, normalize=True, scale_each=True)
writer.add_image('origin', I)
_, c1, c2, c3, c4 = model(images)
# print(I.shape, c1.shape, c2.shape, c3.shape, c4.shape)
attn1 = visualize_attn(I, c1[:,:,0,:,:])
writer.add_image('attn1', attn1)
attn2 = visualize_attn(I, c2[:,:,0,:,:])
writer.add_image('attn2', attn2)
attn3 = visualize_attn(I, c3[:,:,0,:,:])
writer.add_image('attn3', attn3)
attn4 = visualize_attn(I, c4[:,:,0,:,:])
writer.add_image('attn4', attn4)
break
"""
Calculate Word Error Rate
Word Error Rate = (Substitutions + Insertions + Deletions) / Number of Words Spoken
Reference:
https://holianh.github.io/portfolio/Cach-tinh-WER/
https://github.com/imalic3/python-word-error-rate
"""
def wer(r, h):
# initialisation
d = np.zeros((len(r)+1)*(len(h)+1), dtype=np.uint8)
d = d.reshape((len(r)+1, len(h)+1))
for i in range(len(r)+1):
for j in range(len(h)+1):
if i == 0:
d[0][j] = j
elif j == 0:
d[i][0] = i
# computation
for i in range(1, len(r)+1):
for j in range(1, len(h)+1):
if r[i-1] == h[j-1]:
d[i][j] = d[i-1][j-1]
else:
substitution = d[i-1][j-1] + 1
insertion = d[i][j-1] + 1
deletion = d[i-1][j] + 1
d[i][j] = min(substitution, insertion, deletion)
return float(d[len(r)][len(h)]) / len(r) * 100
if __name__ == '__main__':
# Calculate WER
r = [1,2,3,4]
h = [1,1,3,5,6]
print(wer(r, h))