-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
55 lines (41 loc) · 1.44 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""
Generative AI application to run text generation inference (TGI) on Mixtral_8x7B
running on Modal's Serverless Platform.
ref: https://docs.streamlit.io/get-started/tutorials/create-an-app
"""
def main():
import numpy as np
import pandas as pd
import streamlit as st
st.title("Uber pickups in NYC!")
DATE_COLUMN = "date/time"
DATA_URL = (
"https://s3-us-west-2.amazonaws.com/"
"streamlit-demo-data/uber-raw-data-sep14.csv.gz"
)
@st.cache_data
def load_data(nrows):
data = pd.read_csv(DATA_URL, nrows=nrows)
def lowercase(x):
return str(x).lower()
data.rename(lowercase, axis="columns", inplace=True)
data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
return data
data_load_state = st.text("Loading data...")
data = load_data(10000)
data_load_state.text("Done! (using st.cache_data)")
if st.checkbox("Show raw data"):
st.subheader("Raw data")
st.write(data)
st.subheader("Number of pickups per hour")
hist_values = np.histogram(
data[DATE_COLUMN].dt.hour, bins=24, range=(0, 24)
)[0]
st.bar_chart(hist_values)
# Some number in the range 0-23
hour_to_filter = st.slider("hour", 0, 23, 17)
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]
st.subheader("Map of all pickups at %s:00" % hour_to_filter)
st.map(filtered_data)
if __name__ == "__main__":
main()