-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmapper.py
57 lines (50 loc) · 1.42 KB
/
mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 26 15:09:32 2021
@author: M
"""
import numpy as np
import pandas as pd # Not a requirement of giotto-tda, but is compatible with the gtda.mapper module
# Data viz
from gtda.plotting import plot_point_cloud
# TDA magic
from gtda.mapper import (
CubicalCover, Entropy , Eccentricity,
make_mapper_pipeline,
Projection,
plot_static_mapper_graph,
plot_interactive_mapper_graph
)
# ML tools
from sklearn import datasets
from sklearn.cluster import DBSCAN
from sklearn.decomposition import PCA
import networkx as nx
import igraph as ig
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#data, _ = datasets.make_circles(n_samples=2000, noise=0.05, factor=0.3, random_state=42)
#print(data.shape)
#plot_point_cloud(data)
#data = np.random.randint(0,100,(1000,3))
#filter_func = Projection(columns=[0, 1])
#filter_func = Eccentricity()
def Mappe (data , intervals):
filter_func = Eccentricity()
cover = CubicalCover(n_intervals=intervals, overlap_frac=0.3)
clusterer = DBSCAN()
n_jobs = 2
pipe = make_mapper_pipeline(
filter_func=filter_func,
cover=cover,
clusterer=clusterer,
verbose=False,
n_jobs=n_jobs,
)
g = pipe.fit_transform(data)
A = g.get_edgelist()
G = nx.Graph(A)
return G
#print(G.number_of_nodes(),' ',G.number_of_edges())
#nx.draw_networkx(G)
#plt.show()