-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader_ori.py
112 lines (96 loc) · 3.9 KB
/
loader_ori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from pathlib import Path
from random import randint, choice
import PIL
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = None
from torch.utils.data import Dataset
from torchvision import transforms as T
class TextImageDataset(Dataset):
def __init__(self,
folder,
text_len=256,
image_size=128,
truncate_captions=False,
resize_ratio=0.75,
tokenizer=None,
shuffle=False
):
"""
@param folder: Folder containing images and text files matched by their paths' respective "stem"
@param truncate_captions: Rather than throw an exception, captions which are too long will be truncated.
"""
super().__init__()
self.shuffle = shuffle
#path = Path(folder)
text_files_path = Path(folder).joinpath('txt')
image_files_path = Path(folder).joinpath('img')
text_files = [*text_files_path.glob('*.txt')]
image_files = [
*image_files_path.glob('*')
#*image_files_path.glob('*.png'), *image_files_path.glob('*.jpg'),
#*image_files_path.glob('*.jpeg'), *image_files_path.glob('*.bmp')
]
text_files = {text_file.stem: text_file for text_file in text_files}
image_files = {image_file.stem: image_file for image_file in image_files}
keys = (image_files.keys() & text_files.keys())
self.keys = list(keys)
self.text_files = {k: v for k, v in text_files.items() if k in keys}
self.image_files = {k: v for k, v in image_files.items() if k in keys}
self.text_len = text_len
self.truncate_captions = truncate_captions
self.resize_ratio = resize_ratio
self.tokenizer = tokenizer
self.image_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')
if img.mode != 'RGB' else img),
T.RandomResizedCrop(image_size,
scale=(self.resize_ratio, 1.),
ratio=(1., 1.)),
T.ToTensor()
])
def __len__(self):
return len(self.keys)
def random_sample(self):
return self.__getitem__(randint(0, self.__len__() - 1))
def sequential_sample(self, ind):
if ind >= self.__len__() - 1:
return self.__getitem__(0)
return self.__getitem__(ind + 1)
def skip_sample(self, ind):
if self.shuffle:
return self.random_sample()
return self.sequential_sample(ind=ind)
def __getitem__(self, ind):
key = self.keys[ind]
text_file = self.text_files[key]
image_file = self.image_files[key]
try:
f=open(text_file,'r',encoding='utf-8')
descriptions=f.readlines()
f.close()
except:
return self.skip_sample(ind)
try:
#descriptions = text_file.read_text(encoding='gbk').split('\n')
descriptions = list(filter(lambda t: len(t) > 0, descriptions))
description = choice(descriptions)
except IndexError as zero_captions_in_file_ex:
print(f"An exception occurred trying to load file {text_file}.")
print(f"Skipping index {ind}")
return self.skip_sample(ind)
tokenized_text = self.tokenizer.tokenize(
description,
self.text_len,
truncate_text=self.truncate_captions
).squeeze(0)
try:
a=PIL.Image.open(image_file)
image_tensor = self.image_transform(a)
except (PIL.UnidentifiedImageError, OSError) as corrupt_image_exceptions:
print(f"An exception occurred trying to load file {image_file}.")
print(f"Skipping index {ind}")
return self.skip_sample(ind)
# Success
return tokenized_text, image_tensor