forked from epfl-dlab/understanding-decoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmt_vgbs_run1.sh
66 lines (57 loc) · 3.39 KB
/
mt_vgbs_run1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#!/bin/bash
export PYTHONPATH=".:transformers/src:mctx"
# General parameters
#PRINT=true
PRINT=false
#DEBUG=true
DEBUG=false
NUM_DATAPOINTS=36 # Doesn't have an effect if DEBUG is false.
LOGGER=wandb_group
# GPUs and Multiprocessing
VISIBLE_GPUS_STRING="'0,1,2,3'" # More GPUs can be added if available.
NUM_THREADS=4 # Can be increases to the number of GPUs or more if the GPUs fit more models at once.
DATAMODULE_NUM_WORKERS=2
BATCH_SIZE=6 # Can be increases as much as the GPUs / compute allows.
# For VGBS the ddp can be implemented in an alternative way. This might run faster depending on the hardware.
# In addition you might want to increase the batch size for:
# - the LM (above) and
# - the evaluation model (applies only to toxicity; updated via evaluation_model.batch_size).
# To use this setting: 1) set the appropriate number of GPUs; 2) uncomment the commented lines in the call; and 3) delete lines 41 and 56.
NUM_GPUS=4
# Task Specific Parameters
EVALUATION_MODEL="mt_noisy_oracle_b2"
# Experiment Parameters
LAMBDA=0.01
CONTRIBUTION_FACTOR=0.75
if [ $PRINT == true ]
then
echo python -m run_evaluation evaluation=mbart_translation model/decoding=[mbart_generic,value_guided_beam_search] \
model.decoding.hf_generation_params.tokens_considered_by_value_processor=20 \
evaluation_model=$EVALUATION_MODEL \
datamodule.dataset_parameters.test.dataloader.batch_size=$BATCH_SIZE \
datamodule.debug=$DEBUG datamodule.debug_k=$NUM_DATAPOINTS datamodule.num_workers=$DATAMODULE_NUM_WORKERS \
trainer.progress_bar_refresh_rate=1 \
trainer=ddp trainer.gpus=0 +trainer.devices=$NUM_THREADS trainer.accelerator='cpu' +model.scatter_accross_gpus=True \
evaluation_model.noising_function_parameters.lambda=$LAMBDA \
model.decoding.hf_generation_params.contribution_factor=$CONTRIBUTION_FACTOR \
logger=$LOGGER \
+hydra.job.env_set.CUDA_VISIBLE_DEVICES=$VISIBLE_GPUS_STRING \
run_name=mbart_translation_vgbs_lambda_${LAMBDA}_cf_${CONTRIBUTION_FACTOR}
# trainer=ddp trainer.gpus=$NUM_GPUS \ # Uncomment this line and delete the one above for alternative ddp implementation.
# evaluation_model.batch_size=30 \ # Could speed-up evaluation if GPU memory allows for this. Applies only to toxicity.
else
TOKENIZERS_PARALLELISM='false' python -m run_evaluation evaluation=mbart_translation model/decoding=[mbart_generic,value_guided_beam_search] \
model.decoding.hf_generation_params.tokens_considered_by_value_processor=20 \
evaluation_model=$EVALUATION_MODEL \
datamodule.dataset_parameters.test.dataloader.batch_size=$BATCH_SIZE \
datamodule.debug=$DEBUG datamodule.debug_k=$NUM_DATAPOINTS datamodule.num_workers=$DATAMODULE_NUM_WORKERS \
trainer.progress_bar_refresh_rate=1 \
trainer=ddp trainer.gpus=0 +trainer.devices=$NUM_THREADS trainer.accelerator='cpu' +model.scatter_accross_gpus=True \
evaluation_model.noising_function_parameters.lambda=$LAMBDA \
model.decoding.hf_generation_params.contribution_factor=$CONTRIBUTION_FACTOR \
logger=$LOGGER \
+hydra.job.env_set.CUDA_VISIBLE_DEVICES=$VISIBLE_GPUS_STRING \
run_name=mbart_translation_vgbs_lambda_${LAMBDA}_cf_${CONTRIBUTION_FACTOR}
# trainer=ddp trainer.gpus=$NUM_GPUS \ # Uncomment this line and delete the above for alternative ddp implementation.
# evaluation_model.batch_size=30 \ # Could speed-up evaluation if GPU memory allows for this. Applies only to toxicity.
fi