forked from epfl-dlab/understanding-decoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtoxicity_mcts_run2.sh
60 lines (52 loc) · 2.48 KB
/
toxicity_mcts_run2.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/bin/bash
export PYTHONPATH=".:transformers/src:mctx"
# General parameters
#PRINT=true
PRINT=false
#DEBUG=true
DEBUG=false
NUM_DATAPOINTS=96 # Doesn't have an effect if DEBUG is false.
LOGGER=wandb_group
# GPUs and Multiprocessing
VISIBLE_GPUS_STRING="'0,1,2,3,4,5,6,7'"
DATAMODULE_NUM_WORKERS=1
BATCH_SIZE=4
EVALUATION_MODEL_BATCH_SIZE=20
NUM_THREADS=16
# Experiment Parameters
EVALUATION_MODEL="detoxify_noisy_oracle_rmse_01976"
PB_C_INIT=1.25
if [ $PRINT == true ]
then
echo python -m run_evaluation evaluation=gpt2_toxicgen model/decoding=[gpt_generic,pplmcts] \
model.decoding.hf_generation_params.mcts_topk_actions=20 \
model.decoding.hf_generation_params.mcts_num_simulations=50 \
evaluation_model=$EVALUATION_MODEL \
datamodule.dataset_parameters.test.dataloader.batch_size=$BATCH_SIZE \
evaluation_model.batch_size=$EVALUATION_MODEL_BATCH_SIZE \
evaluation_model.device=cpu \
datamodule.debug=$DEBUG datamodule.debug_k=$NUM_DATAPOINTS datamodule.num_workers=$DATAMODULE_NUM_WORKERS \
+datamodule.dataset_parameters.test.dataset.subsample=True \
trainer.progress_bar_refresh_rate=1 \
trainer=ddp trainer.gpus=0 +trainer.devices=$NUM_THREADS trainer.accelerator='cpu' +model.scatter_accross_gpus=True \
model.decoding.hf_generation_params.mcts_pb_c_init=$PB_C_INIT \
logger=$LOGGER \
+hydra.job.env_set.CUDA_VISIBLE_DEVICES=$VISIBLE_GPUS_STRING \
run_name=gpt2_toxicity_mcts_em_${EVALUATION_MODEL}_pb_c_init_${PB_C_INIT}
else
TOKENIZERS_PARALLELISM='false' python -m run_evaluation evaluation=gpt2_toxicgen model/decoding=[gpt_generic,pplmcts] \
model.decoding.hf_generation_params.mcts_topk_actions=20 \
model.decoding.hf_generation_params.mcts_num_simulations=50 \
evaluation_model=$EVALUATION_MODEL \
datamodule.dataset_parameters.test.dataloader.batch_size=$BATCH_SIZE \
evaluation_model.batch_size=$EVALUATION_MODEL_BATCH_SIZE \
evaluation_model.device=cpu \
datamodule.debug=$DEBUG datamodule.debug_k=$NUM_DATAPOINTS datamodule.num_workers=$DATAMODULE_NUM_WORKERS \
+datamodule.dataset_parameters.test.dataset.subsample=True \
trainer.progress_bar_refresh_rate=1 \
trainer=ddp trainer.gpus=0 +trainer.devices=$NUM_THREADS trainer.accelerator='cpu' +model.scatter_accross_gpus=True \
model.decoding.hf_generation_params.mcts_pb_c_init=$PB_C_INIT \
logger=$LOGGER \
+hydra.job.env_set.CUDA_VISIBLE_DEVICES=$VISIBLE_GPUS_STRING \
run_name=gpt2_toxicity_mcts_em_${EVALUATION_MODEL}_pb_c_init_${PB_C_INIT}
fi