forked from jiupinjia/stylized-neural-painting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_nst.py
99 lines (79 loc) · 4.65 KB
/
demo_nst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import argparse
import torch
import torch.optim as optim
from painter import *
# settings
parser = argparse.ArgumentParser(description='STYLIZED NEURAL PAINTING')
parser.add_argument('--renderer', type=str, default='oilpaintbrush', metavar='str',
help='renderer: [watercolor, markerpen, oilpaintbrush, rectangle (default oilpaintbrush)')
parser.add_argument('--vector_file', type=str, default='./output/sunflowers_strokes.npz', metavar='str',
help='path to pre-generated stroke vector file (default: ...)')
parser.add_argument('--style_img_path', type=str, default='./style_images/fire.jpg', metavar='str',
help='path to style image (default: ...)')
parser.add_argument('--content_img_path', type=str, default='./test_images/sunflowers.jpg', metavar='str',
help='path to content image (default: ...)')
parser.add_argument('--transfer_mode', type=int, default=1, metavar='N',
help='style transfer mode, 0: transfer color only, 1: transfer both color and texture, '
'defalt: 1')
parser.add_argument('--canvas_color', type=str, default='black', metavar='str',
help='canvas_color: [black, white] (default black)')
parser.add_argument('--canvas_size', type=int, default=512, metavar='str',
help='size of the canvas for stroke rendering')
parser.add_argument('--keep_aspect_ratio', action='store_true', default=False,
help='keep input aspect ratio when saving outputs')
parser.add_argument('--beta_L1', type=float, default=1.0,
help='weight for L1 loss (default: 1.0)')
parser.add_argument('--beta_sty', type=float, default=0.5,
help='weight for vgg style loss (default: 0.5)')
parser.add_argument('--net_G', type=str, default='zou-fusion-net-light', metavar='str',
help='net_G: plain-dcgan, plain-unet, huang-net, zou-fusion-net, '
'or zou-fusion-net-light (default: zou-fusion-net-light)')
parser.add_argument('--renderer_checkpoint_dir', type=str, default=r'./checkpoints_G_oilpaintbrush_light', metavar='str',
help='dir to load neu-renderer (default: ./checkpoints_G_oilpaintbrush_light)')
parser.add_argument('--lr', type=float, default=0.002,
help='learning rate for stroke searching (default: 0.005)')
parser.add_argument('--output_dir', type=str, default=r'./output', metavar='str',
help='dir to save style transfer results (default: ./output)')
parser.add_argument('--disable_preview', action='store_true', default=False,
help='disable cv2.imshow, for running remotely without x-display')
args = parser.parse_args()
# Decide which device we want to run on
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def optimize_x(pt):
pt._load_checkpoint()
pt.net_G.eval()
if args.transfer_mode == 0: # transfer color only
pt.x_ctt.requires_grad = False
pt.x_color.requires_grad = True
pt.x_alpha.requires_grad = False
else: # transfer both color and texture
pt.x_ctt.requires_grad = True
pt.x_color.requires_grad = True
pt.x_alpha.requires_grad = True
pt.optimizer_x_sty = optim.RMSprop([pt.x_ctt, pt.x_color, pt.x_alpha], lr=pt.lr)
iters_per_stroke = 100
for i in range(iters_per_stroke):
pt.optimizer_x_sty.zero_grad()
pt.x_ctt.data = torch.clamp(pt.x_ctt.data, 0.1, 1 - 0.1)
pt.x_color.data = torch.clamp(pt.x_color.data, 0, 1)
pt.x_alpha.data = torch.clamp(pt.x_alpha.data, 0, 1)
if args.canvas_color == 'white':
pt.G_pred_canvas = torch.ones([pt.m_grid*pt.m_grid, 3, pt.net_G.out_size, pt.net_G.out_size]).to(device)
else:
pt.G_pred_canvas = torch.zeros(pt.m_grid*pt.m_grid, 3, pt.net_G.out_size, pt.net_G.out_size).to(device)
pt._forward_pass()
pt._style_transfer_step_states()
pt._backward_x_sty()
pt.optimizer_x_sty.step()
pt.x_ctt.data = torch.clamp(pt.x_ctt.data, 0.1, 1 - 0.1)
pt.x_color.data = torch.clamp(pt.x_color.data, 0, 1)
pt.x_alpha.data = torch.clamp(pt.x_alpha.data, 0, 1)
pt.step_id += 1
print('saving style transfer result...')
v_n = pt._normalize_strokes(pt.x)
v_n = pt._shuffle_strokes_and_reshape(v_n)
final_rendered_image = pt._render(v_n, save_jpgs=False, save_video=False)
pt._save_style_transfer_images(final_rendered_image)
if __name__ == '__main__':
pt = NeuralStyleTransfer(args=args)
optimize_x(pt)