-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_class.py
265 lines (244 loc) · 11.8 KB
/
finetune_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/python
#-*-coding:utf-8-*-
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Finetune:to do some downstream task
"""
import os
from os.path import join, exists, basename
import argparse
import numpy as np
import time
import paddle
import paddle.nn as nn
import pgl
from model_zoo.gem_model import GeoGNNModel
from utils.basic_utils import load_json_config
from datasets.inmemory_dataset import InMemoryDataset
from src.model import DownstreamModel
from src.featurizer import DownstreamTransformFn, DownstreamCollateFn
from src.utils import get_dataset, create_splitter, get_downstream_task_names, calc_rocauc_score, exempt_parameters
def train(args, model, train_dataset, collate_fn, criterion, encoder_opt=None, head_opt=None):
"""
Define the train function
Args:
args,model,train_dataset,collate_fn,criterion,encoder_opt,head_opt;
Returns:
the average of the list loss
"""
data_gen = train_dataset.get_data_loader(
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
collate_fn=collate_fn)
list_loss = []
model.train()
for atom_bond_graphs, bond_angle_graphs, dihes_angle_graphs, valids, labels in data_gen:
if len(labels) < args.batch_size * 0.5:
continue
atom_bond_graphs = atom_bond_graphs.tensor()
bond_angle_graphs = bond_angle_graphs.tensor()
dihes_angle_graphs = dihes_angle_graphs.tensor()
labels = paddle.to_tensor(labels, 'float32')
valids = paddle.to_tensor(valids, 'float32')
preds = model(atom_bond_graphs, bond_angle_graphs, dihes_angle_graphs)
loss = criterion(preds, labels)
loss = paddle.sum(loss * valids) / paddle.sum(valids)
loss.backward()
if encoder_opt is not None:
encoder_opt.step()
if head_opt is not None:
head_opt.step()
if encoder_opt is not None:
encoder_opt.clear_grad()
if head_opt is not None:
head_opt.clear_grad()
list_loss.append(loss.numpy())
return np.mean(list_loss)
def evaluate(args, model, test_dataset, collate_fn):
"""
Define the evaluate function
In the dataset, a proportion of labels are blank. So we use a `valid` tensor
to help eliminate these blank labels in both training and evaluation phase.
"""
data_gen = test_dataset.get_data_loader(
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
collate_fn=collate_fn)
total_pred = []
total_label = []
total_valid = []
model.eval()
for atom_bond_graphs, bond_angle_graphs, dihes_angle_graphs, valids, labels in data_gen:
atom_bond_graphs = atom_bond_graphs.tensor()
bond_angle_graphs = bond_angle_graphs.tensor()
dihes_angle_graphs = dihes_angle_graphs.tensor()
labels = paddle.to_tensor(labels, 'float32')
valids = paddle.to_tensor(valids, 'float32')
preds = model(atom_bond_graphs, bond_angle_graphs, dihes_angle_graphs)
total_pred.append(preds.numpy())
total_valid.append(valids.numpy())
total_label.append(labels.numpy())
total_pred = np.concatenate(total_pred, 0)
total_label = np.concatenate(total_label, 0)
total_valid = np.concatenate(total_valid, 0)
return calc_rocauc_score(total_label, total_pred, total_valid)
def get_pos_neg_ratio(dataset):
"""tbd"""
labels = np.array([data['label'] for data in dataset])
return np.mean(labels == 1), np.mean(labels == -1)
def main(args):
"""
Call the configuration function of the model, build the model and load data, then start training.
model_config:
a json file with the hyperparameters,such as dropout rate ,learning rate,num tasks and so on;
num_tasks:
it means the number of task that each dataset contains, it's related to the dataset;
"""
compound_encoder_config = load_json_config(args.compound_encoder_config)
if not args.dropout_rate is None:
compound_encoder_config['dropout_rate'] = args.dropout_rate
model_config = load_json_config(args.model_config)
if not args.dropout_rate is None:
model_config['dropout_rate'] = args.dropout_rate
task_names = get_downstream_task_names(args.dataset_name, args.data_path)
model_config['task_type'] = 'class'
model_config['num_tasks'] = len(task_names)
### load data
# featurizer:
# Gen features according to the raw data and return the graph data.
# Collate features about the graph data and return the feed dictionary.
# splitter:
# split type of the dataset:random,scaffold,random with scaffold. Here is randomsplit.
# `ScaffoldSplitter` will firstly order the compounds according to Bemis-Murcko scaffold,
# then take the first `frac_train` proportion as the train set, the next `frac_valid` proportion as the valid set
# and the rest as the test set. `ScaffoldSplitter` can better evaluate the generalization ability of the model on
# out-of-distribution samples. Note that other splitters like `RandomSplitter`, `RandomScaffoldSplitter`
# and `IndexSplitter` is also available."
pt_model_config = load_json_config("model_configs/pretrain_gem.json")
if args.task == 'data':
print('Preprocessing data...')
dataset = get_dataset(args.dataset_name, args.data_path, task_names)
dataset.transform(DownstreamTransformFn())
dataset._none_remove()
dataset.save_data(args.cached_data_path)
return
else:
if args.cached_data_path is None or args.cached_data_path == "":
print('Processing data...')
dataset = get_dataset(args.dataset_name, args.data_path, task_names)
dataset.transform(DownstreamTransformFn())
else:
print('Read preprocessing data...')
dataset = InMemoryDataset(npz_data_path=args.cached_data_path)
### build model
compound_encoder = GeoGNNModel(compound_encoder_config)
model = DownstreamModel(model_config, compound_encoder)
criterion = nn.BCELoss(reduction='none')
encoder_params = compound_encoder.parameters()
head_params = exempt_parameters(model.parameters(), encoder_params)
encoder_opt = paddle.optimizer.Adam(args.encoder_lr, parameters=encoder_params)
# encoder_opt = None
head_opt = paddle.optimizer.Adam(args.head_lr, parameters=head_params)
print('Total param num: %s' % (len(model.parameters())))
if encoder_opt is not None:
print('Encoder param num: %s' % (len(encoder_params)))
print('Head param num: %s' % (len(head_params)))
for i, param in enumerate(model.named_parameters()):
print(i, param[0], param[1].name)
if not args.init_model is None and not args.init_model == "":
compound_encoder.set_state_dict(paddle.load(args.init_model))
print('Load state_dict from %s' % args.init_model)
s = time.time()
print("process data time used:%ss" % (time.time() - s))
splitter = create_splitter(args.split_type)
train_dataset, valid_dataset, test_dataset = splitter.split(dataset, frac_train=0.8, frac_valid=0.1, frac_test=0.1)
print("Train/Valid/Test num: %s/%s/%s" % (len(train_dataset), len(valid_dataset), len(test_dataset)))
print('Train pos/neg ratio %s/%s' % get_pos_neg_ratio(train_dataset))
print('Valid pos/neg ratio %s/%s' % get_pos_neg_ratio(valid_dataset))
print('Test pos/neg ratio %s/%s' % get_pos_neg_ratio(test_dataset))
### start train
# Load the train function and calculate the train loss in each epoch.
# Here we set the epoch is in range of max epoch,you can change it if you want.
# Then we will calculate the train loss ,valid auc,test auc and print them.
# Finally we save it to the model according to the dataset.
list_val_auc, list_test_auc = [], []
list_train_loss = []
collate_fn = DownstreamCollateFn(
atom_names=compound_encoder_config['atom_names'],
bond_names=compound_encoder_config['bond_names'],
bond_float_names=compound_encoder_config['bond_float_names'],
bond_angle_float_names=compound_encoder_config['bond_angle_float_names'],
task_type='class'
)
for epoch_id in range(args.max_epoch):
s = time.time()
train_loss = train(args, model, train_dataset, collate_fn, criterion, encoder_opt, head_opt)
val_auc = evaluate(args, model, valid_dataset, collate_fn)
test_auc = evaluate(args, model, test_dataset, collate_fn)
list_train_loss.append(train_loss)
list_val_auc.append(val_auc)
list_test_auc.append(test_auc)
test_auc_by_eval = list_test_auc[np.argmax(list_val_auc)]
print("epoch:%s train/loss:%s" % (epoch_id, train_loss))
print("epoch:%s val/auc:%s" % (epoch_id, val_auc))
print("epoch:%s test/auc:%s" % (epoch_id, test_auc))
print("epoch:%s test/auc_by_eval:%s" % (epoch_id, test_auc_by_eval))
print("Time used:%ss" % (time.time() - s))
outs = {
'model_config': basename(args.model_config).replace('.json', ''),
'metric': '',
'dataset': args.dataset_name,
'split_type': args.split_type,
'batch_size': args.batch_size,
'dropout_rate': args.dropout_rate,
'encoder_lr': args.encoder_lr,
'head_lr': args.head_lr,
'exp_id': args.exp_id,
}
offset = 20
best_epoch_id = np.argmax(list_val_auc[offset:]) + offset
for metric, value in [
('test_auc', list_test_auc[best_epoch_id]),
('max_valid_auc', np.max(list_val_auc)),
('max_test_auc', np.max(list_test_auc))]:
outs['metric'] = metric
print('\t'.join(['FINAL'] + ["%s:%s" % (k, outs[k]) for k in outs] + [str(value)]))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
gen = paddle.seed(4321)
np.random.seed(4321)
parser.add_argument("--task", choices=['train', 'data'], default='train')
parser.add_argument("--DEBUG", action='store_true', default=False)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--max_epoch", type=int, default=100)
parser.add_argument("--dataset_name", choices=['bace', 'bbbp', 'clintox', 'hiv', 'muv', 'sider', 'tox21',
'toxcast'])
parser.add_argument("--data_path", type=str, default=None)
parser.add_argument("--cached_data_path", type=str, default=None)
parser.add_argument("--split_type",
choices=['random', 'scaffold', 'random_scaffold', 'index'])
parser.add_argument("--compound_encoder_config", type=str)
parser.add_argument("--model_config", type=str)
parser.add_argument("--init_model", type=str, default=None)
parser.add_argument("--model_dir", type=str)
parser.add_argument("--encoder_lr", type=float, default=0.001)
parser.add_argument("--head_lr", type=float, default=0.001)
parser.add_argument("--dropout_rate", type=float, default=0.2)
parser.add_argument("--exp_id", type=int, help='used for identification only')
args = parser.parse_args()
main(args)