-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathpolicy_tuned_dqn.py
597 lines (495 loc) · 23.8 KB
/
policy_tuned_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
"""
Tuned DQN algorithm for optimized trade execution
"""
import torch
import torch.nn as nn
import torch.optim as opt
from torch import Tensor
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from constants import CODE_LIST, JUNE_DATE_LIST, VALIDATION_DATE_LIST, VALIDATION_CODE_LIST
from env import make_env
from pathos.multiprocessing import ProcessingPool as Pool
from sklearn.preprocessing import StandardScaler
from scipy.special import softmax, expit
from collections import deque
from tqdm import trange
import pandas as pd
import numpy as np
import itertools
import pdb
import os
class DefaultConfig(object):
path_raw_data = '/data/execution_data_v2/raw'
# path_pkl_data = '/data/execution_data/pkl'
path_pkl_data = '/mnt/execution_data_v2/pkl'
# path_pkl_data = os.path.expanduser('~/execution_data/pkl')
result_path = 'results/exp36'
code_list = CODE_LIST
date_list = JUNE_DATE_LIST
code_list_validation = VALIDATION_CODE_LIST
date_list_validation = VALIDATION_DATE_LIST
agent_scale = 100000
agent_batch_size = 128
agent_learn_start = 1000
agent_gamma = 0.998
agent_epsilon = 0.7
agent_total_steps = 20 * agent_scale
agent_buffer_size = agent_scale
agent_network_update_freq = 4
# Smooth L1 loss (SL1) or mean squared error (MSE)
agent_loss_type = 'SL1'
agent_lr_decay_freq = 2000
agent_target_update_freq = 2000
agent_eval_freq = 2000
# Becomes 0.01 upon 70% of the training
agent_epsilon_decay = np.exp(np.log(0.01) / (agent_scale * 0.5))
agent_plot_freq = 20000
agent_device = 'cuda'
# Selected features
simulation_features = [
'bidPrice1', 'bidPrice2', 'bidPrice3', 'bidPrice4', 'bidPrice5',
'bidVolume1', 'bidVolume2', 'bidVolume3', 'bidVolume4', 'bidVolume5',
'askPrice1', 'askPrice2', 'askPrice3', 'askPrice4', 'askPrice5',
'askVolume1', 'askVolume2', 'askVolume3', 'askVolume4', 'askVolume5',
'high_low_price_diff', 'close_price', 'volume', 'vwap', 'time_diff',
'ask_bid_spread', 'ab_volume_misbalance', 'transaction_net_volume', 'volatility',
'trend', 'immediate_market_order_cost_bid',
]
# ############################### Trade Setting Parameters ###############################
# Planning horizon is 30mins
simulation_planning_horizon = 30
# Total volume to trade w.r.t. the basis volume
simulation_volume_ratio = 0.005
# Order volume = total volume / simulation_num_shares
simulation_num_shares = 10
# Maximum quantity is total_quantity / simulation_num_shares; further devide this into 3 levels
simulation_discrete_quantities = 3
# Choose the wrapper
simulation_action_type = 'discrete_pq'
# Discrete action space
simulation_discrete_actions = \
list(itertools.product(
np.concatenate([[-50, -40, -30, -25, -20, -15], np.linspace(-10, 10, 21), [15, 20, 25, 30, 40, 50]]),
np.arange(simulation_discrete_quantities) + 1
))
# ############################### END ###############################
# ############################### Test Parameters ###############################
# Encourage a uniform liquidation strategy
simulation_linear_reg_coeff = [0.1]
agent_learning_rate = [2e-5, 1e-5, 5e-6]
agent_network_structrue = 'MLPNetwork_complex,MLPNetwork_Xcomplex'
# ############################### END ###############################
# Stack the features of the previous x bars
simulation_loockback_horizon = 5
# Whether return flattened or stacked features of the past x bars
simulation_do_feature_flatten = True
simulation_direction = 'sell'
# If the quantity is not fully filled at the last time step, we place an MO to liquidate and further plus a penalty
simulation_not_filled_penalty_bp = 2.0
# Scale the price delta if we use continuous actions
# simulation_continuous_action_scale = 10
# The Q network
class MLPNetwork(nn.Module):
def __init__(self, dim_input1, dim_input2, dim_output, hidden=128):
super(MLPNetwork, self).__init__()
self.dim_input1 = dim_input1
self.dim_input2 = dim_input2
self.dim_output = dim_output
self.fc1 = nn.Linear(dim_input1, 2 * hidden)
self.fc2 = nn.Linear(2 * hidden, hidden)
self.fc3 = nn.Linear(dim_input2, hidden)
self.fc4 = nn.Linear(2 * hidden, dim_output)
def forward(self, market_states, private_states):
x = F.relu(self.fc1(market_states))
x = F.relu(self.fc2(x))
y = F.relu(self.fc3(private_states))
z = torch.cat((x, y), 1)
z = self.fc4(z)
return z
def act(self, market_state, private_state, device='cuda'):
market_state = Tensor(market_state).unsqueeze(0).to(device=device)
private_state = Tensor(private_state).unsqueeze(0).to(device=device)
return int(self.forward(market_state, private_state).argmax(1)[0])
def act_egreedy(self, market_state, private_state, e=0.7, device='cuda'):
return self.act(market_state, private_state, device='cuda') if np.random.rand() > e \
else np.random.randint(self.dim_output)
# The Q network - more parameters
class MLPNetwork_complex(nn.Module):
def __init__(self, dim_input1, dim_input2, dim_output, hidden=256):
super(MLPNetwork_complex, self).__init__()
self.dim_input1 = dim_input1
self.dim_input2 = dim_input2
self.dim_output = dim_output
self.fc1 = nn.Linear(dim_input1, 2 * hidden)
self.fc2 = nn.Linear(2 * hidden, hidden)
self.fc3 = nn.Linear(dim_input2, hidden)
self.fc4 = nn.Linear(2 * hidden, hidden)
self.fc5 = nn.Linear(hidden, dim_output)
def forward(self, market_states, private_states):
x = F.relu(self.fc1(market_states))
x = F.relu(self.fc2(x))
y = F.relu(self.fc3(private_states))
z = torch.cat((x, y), 1)
z = F.relu(self.fc4(z))
z = self.fc5(z)
return z
def act(self, market_state, private_state, device='cuda'):
market_state = Tensor(market_state).unsqueeze(0).to(device=device)
private_state = Tensor(private_state).unsqueeze(0).to(device=device)
return int(self.forward(market_state, private_state).argmax(1)[0])
def act_egreedy(self, market_state, private_state, e=0.7, device='cuda'):
return self.act(market_state, private_state, device='cuda') if np.random.rand() > e \
else np.random.randint(self.dim_output)
# The Q network - more more parameters
class MLPNetwork_Xcomplex(nn.Module):
def __init__(self, dim_input1, dim_input2, dim_output, hidden=512):
super(MLPNetwork_Xcomplex, self).__init__()
self.dim_input1 = dim_input1
self.dim_input2 = dim_input2
self.dim_output = dim_output
self.fc1 = nn.Linear(dim_input1, 2 * hidden)
self.fc2 = nn.Linear(2 * hidden, hidden)
self.fc3 = nn.Linear(dim_input2, hidden)
self.fc4 = nn.Linear(2 * hidden, hidden)
self.fc5 = nn.Linear(hidden, hidden)
self.fc6 = nn.Linear(hidden, dim_output)
def forward(self, market_states, private_states):
x = F.relu(self.fc1(market_states))
x = F.relu(self.fc2(x))
y = F.relu(self.fc3(private_states))
z = torch.cat((x, y), 1)
z = F.relu(self.fc4(z))
z = F.relu(self.fc5(z))
z = self.fc6(z)
return z
def act(self, market_state, private_state, device='cuda'):
market_state = Tensor(market_state).unsqueeze(0).to(device=device)
private_state = Tensor(private_state).unsqueeze(0).to(device=device)
return int(self.forward(market_state, private_state).argmax(1)[0])
def act_egreedy(self, market_state, private_state, e=0.7, device='cuda'):
return self.act(market_state, private_state, device='cuda') if np.random.rand() > e \
else np.random.randint(self.dim_output)
# The Q network - more parameters + positional encoding
class MLPNetwork_complex_posenc(nn.Module):
def __init__(self, dim_input1, dim_input2, dim_output, hidden=256):
super(MLPNetwork_complex_posenc, self).__init__()
self.dim_input1 = dim_input1
self.dim_input2 = dim_input2
self.dim_output = dim_output
self.hidden = hidden
self.fc1 = nn.Linear(dim_input1, 2 * hidden)
self.fc2 = nn.Linear(2 * hidden, hidden)
self.fc4 = nn.Linear(2 * hidden, hidden)
self.fc5 = nn.Linear(hidden, dim_output)
def forward(self, market_states, private_states):
y = torch.einsum('bi, j->bij', private_states, torch.arange(self.hidden // self.dim_input2, device=private_states.device))
y = y.view(-1, self.hidden)
y = torch.sin(y * 12345).detach()
x = F.relu(self.fc1(market_states))
x = F.relu(self.fc2(x))
z = torch.cat((x, y), 1)
z = F.relu(self.fc4(z))
z = self.fc5(z)
return z
def act(self, market_state, private_state, device='cuda'):
market_state = Tensor(market_state).unsqueeze(0).to(device=device)
private_state = Tensor(private_state).unsqueeze(0).to(device=device)
return int(self.forward(market_state, private_state).argmax(1)[0])
def act_egreedy(self, market_state, private_state, e=0.7, device='cuda'):
return self.act(market_state, private_state, device='cuda') if np.random.rand() > e \
else np.random.randint(self.dim_output)
class ReplayBuffer(object):
"""docstring for ReplayBuffer"""
def __init__(self, maxlen):
super(ReplayBuffer, self).__init__()
self.maxlen = maxlen
self.data = deque(maxlen=maxlen)
def push(self, *args):
self.data.append(args)
def sample(self, batch_size):
inds = np.random.choice(len(self.data), batch_size, replace=False)
return zip(*[self.data[i] for i in inds])
def sample_all(self):
return zip(*list(self.data))
def update_all(self, new_data, ind):
for i in range(len(self.data)):
tup = list(self.data[i])
tup[ind] = new_data[i, :]
self.data[i] = tuple(tup)
class Agent(object):
def __init__(self, config):
super(Agent, self).__init__()
self._set_seed()
self.config = config
self.env = make_env(config)
self.dim_input1 = self.env.observation_dim # dimension of market states
self.dim_input2 = 2 # dimension of private states
self.dim_output = self.env.action_dim
network = config.agent_network_structrue
self.network = network(self.dim_input1, self.dim_input2, self.dim_output).to(device=self.config.agent_device)
self.network_target = network(self.dim_input1, self.dim_input2, self.dim_output).to(device=self.config.agent_device)
self.network_target.load_state_dict(self.network.state_dict())
self.optimizer = opt.Adam(self.network.parameters(), lr=config.agent_learning_rate)
self.scheduler = opt.lr_scheduler.StepLR(self.optimizer, step_size=config.agent_lr_decay_freq, gamma=0.998)
self.buffer = ReplayBuffer(self.config.agent_buffer_size)
self.evaluation = Evaluation(self.config)
if config.agent_loss_type == 'MSE':
self.loss_func = nn.MSELoss()
elif config.agent_loss_type == 'SL1':
self.loss_func = F.smooth_l1_loss
def _set_seed(self, seed=None):
if seed is None:
seed = int.from_bytes(os.urandom(4), byteorder='little')
else:
seed = seed + 1234
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
@staticmethod
def _filter(state):
return np.clip(state, -3, 3)
def _to_tensor(self, tensor, dtype=torch.float):
return torch.tensor(tensor, dtype=dtype, device=self.config.agent_device)
def learn(self):
train_record = []
eval_record = []
reward = 0
eplen = 0
loss = 0
avg_Q = 0
epsilon = self.config.agent_epsilon
ms_scaler = StandardScaler()
sm, sp = self.env.reset()
for i in trange(self.config.agent_total_steps):
# Step 1: Execute one step and store it to the replay buffer
if i <= self.config.agent_learn_start:
a = self.env.action_sample_func()
else:
tsm = ms_scaler.transform(sm.reshape(1, -1)).flatten()
a = self.network.act_egreedy(tsm, sp, e=epsilon, device=self.config.agent_device)
nsm, nsp, r, done, info = self.env.step(a)
self.buffer.push(sm, sp, a, r, nsm, nsp, done)
reward += r
eplen += 1
if done:
train_record.append(dict(
i=i,
reward=reward,
eplen=eplen,
epsilon=epsilon,
lr=self.optimizer.param_groups[0]['lr'],
loss=float(loss),
avg_Q=float(avg_Q),
BP=self.env.get_metric('BP'),
IS=self.env.get_metric('IS'),
code=info['code'],
date=info['date'],
start_index=info['start_index']
))
reward = 0
eplen = 0
epsilon = max(0.01, epsilon * self.config.agent_epsilon_decay)
sm, sp = self.env.reset()
else:
sm, sp = nsm, nsp
# Step 2: Estimate variance for market states
if i == self.config.agent_learn_start:
market_states, _, _, _, nmarket_states, _, _ = self.buffer.sample_all()
ms_scaler.fit(np.array(market_states))
# Since we will use the buffer later, so we need to scale the market states in the buffer
self.buffer.update_all(ms_scaler.transform(market_states), 0)
self.buffer.update_all(ms_scaler.transform(nmarket_states), 4)
# Step 3: Update the network every several steps
if i >= self.config.agent_learn_start and i % self.config.agent_network_update_freq == 0:
# sample a batch from the replay buffer
bsm, bsp, ba, br, bnsm, bnsp, bd = self.buffer.sample(self.config.agent_batch_size)
market_states = self._to_tensor(self._filter(ms_scaler.transform(np.array(bsm))))
private_states = self._to_tensor(np.array(bsp))
actions = self._to_tensor(np.array(ba), dtype=torch.long)
rewards = self._to_tensor(np.array(br))
nmarket_states = self._to_tensor(self._filter(ms_scaler.transform(np.array(bnsm))))
nprivate_states = self._to_tensor(np.array(bnsp))
masks = self._to_tensor(1 - np.array(bd) * 1)
nactions = self.network(nmarket_states, nprivate_states).argmax(1)
Qtarget = (rewards + masks * self.config.agent_gamma * \
self.network_target(nmarket_states, nprivate_states)[range(self.config.agent_batch_size), \
nactions]).detach()
Qvalue = self.network(market_states, private_states)[range(self.config.agent_batch_size), actions]
avg_Q = Qvalue.mean().detach()
loss = self.loss_func(Qvalue, Qtarget)
self.network.zero_grad()
loss.backward()
for param in self.network.parameters():
param.grad.data.clamp_(-1, 1)
# print('Finish the {}-th iteration, the loss = {}'.format(i, float(loss)))
self.optimizer.step()
self.scheduler.step()
# Step 4: Update target network
if i % self.config.agent_target_update_freq == 0:
self.network_target.load_state_dict(self.network.state_dict())
# Step 5: Evaluate and log performance
if i % self.config.agent_plot_freq == 0 and len(train_record) > 0:
eval_agent = (lambda sm, sp: self.network.act_egreedy(ms_scaler.transform(sm.reshape(1, -1)).flatten(), sp, e=0.0)) \
if i > self.config.agent_learn_start else \
(lambda sm, sp: self.network.act_egreedy(sm, sp, e=0.0))
self.evaluation.evaluate_detail_batch(eval_agent, iteration=i)
print(train_record[-1])
if i % self.config.agent_eval_freq == 0:
eval_agent = (lambda sm, sp: self.network.act_egreedy(ms_scaler.transform(sm.reshape(1, -1)).flatten(), sp, e=0.0)) \
if i > self.config.agent_learn_start else \
(lambda sm, sp: self.network.act_egreedy(sm, sp, e=0.0))
eval_record.append(self.evaluation.evaluate(eval_agent))
print(eval_record[-1])
return train_record, eval_record
class Evaluation(object):
def __init__(self, config):
super(Evaluation, self).__init__()
self.config = config
self.env = make_env(config)
def evaluate(self, agent):
bp_list = []
rew_list = []
for code in self.config.code_list_validation:
for date in self.config.date_list_validation:
record = self.evaluate_single(agent, code=code, date=date)
bp_list.append(record['BP'].values[-1])
rew_list.append(record['reward'].sum())
return dict(
BP=np.mean(bp_list),
reward=np.mean(rew_list)
)
def evaluate_detail_batch(self, agent, iteration=1,
code='000504.XSHE',
date_list=['2021-06-01', '2021-06-03', '2021-06-04', '2021-07-02', '2021-07-05', '2021-07-06']):
path = os.path.join(self.config.result_path, 'evaluation', 'it{:08d}'.format(iteration))
os.makedirs(path, exist_ok=True)
record = []
for date in date_list:
for i in range(5):
res = self.evaluate_single(agent, code=code, date=date)
record.append(res)
Figure().plot_policy(df=res, filename=os.path.join(path, 'fig_{}_{}_{}.png'.format(code, date, i)))
pd.concat(record).to_csv(os.path.join(path, 'detail_{}.csv'.format(code)))
def evaluate_single(self, agent, code='600519.XSHG', date='2021-06-01'):
record = []
sm, sp = self.env.reset(code, date)
done = False
step = 0
action = None
info = dict(status=None)
while not done:
action = agent(sm, sp)
nsm, nsp, reward, done, info = self.env.step(action)
if self.config.simulation_action_type == 'discrete_pq':
order_price = self.config.simulation_discrete_actions[action][0]
order_price = np.round((1 + order_price / 10000) \
* self.env.data.obtain_level('askPrice', 1) * 100) / 100
elif self.config.simulation_action_type == 'discrete_p':
order_price = self.config.simulation_discrete_actions[action]
order_price = np.round((1 + order_price / 10000) \
* self.env.data.obtain_level('askPrice', 1) * 100) / 100
elif self.config.simulation_action_type == 'discrete_q':
order_price = self.env.data.obtain_level('bidPrice', 1)
record.append(dict(
code=code,
date=date,
step=step,
quantity=self.env.quantity,
action=action,
ask_price=self.env.data.obtain_level('askPrice', 1),
bid_price=self.env.data.obtain_level('bidPrice', 1),
order_price=order_price,
reward=reward,
cash=self.env.cash,
BP=self.env.get_metric('BP'),
IS=self.env.get_metric('IS'),
status=info['status'],
index=self.env.data.current_index
))
step += 1
sm, sp = nsm, nsp
return pd.DataFrame(record)
class Figure(object):
def __init__(self):
pass
@staticmethod
def plot_policy(df, filename):
fig, ax1 = plt.subplots(figsize=(15, 6))
ax2 = ax1.twinx()
ax1.plot(df['index'], df['ask_price'], label='ask_price')
ax1.plot(df['index'], df['bid_price'], label='bid_price')
ax1.plot(df['index'], df['order_price'], label='order_price')
ax1.legend(loc='lower left')
ax2.plot(df['index'], df['quantity'], 'k*', label='inventory')
ax1.set_title('{} {} BP={:.4f}'.format(df['code'].values[-1], df['date'].values[-1], df['BP'].values[-1]))
ax2.legend(loc='upper right')
plt.savefig(filename, bbox_inches='tight')
plt.close('all')
@staticmethod
def plot_training_process_basic(df, filename):
while df.shape[0] > 1500:
df = df[::2]
fig, ax1 = plt.subplots(figsize=(15, 6))
ax2 = ax1.twinx()
ax1.plot(df.index.values, df['reward'], 'C0', label='reward')
ax1.legend(loc='lower left')
ax2.plot(df.index.values, df['BP'], 'C1', label='BP')
ax2.legend(loc='upper right')
top_size = df.shape[0] // 10
mean_bp_first = np.mean(df['BP'].values[:top_size])
mean_bp_last = np.mean(df['BP'].values[-top_size:])
mean_rew_first = np.mean(df['reward'].values[:top_size])
mean_rew_last = np.mean(df['reward'].values[-top_size:])
ax2.set_title('BP {:.4f}->{:.4f} reward {:.4f}->{:.4f}'.format(mean_bp_first, mean_bp_last, mean_rew_first, mean_rew_last))
if 'loss' in df.columns:
ax3 = ax1.twinx()
p3, = ax3.plot(df.index.values, df['loss'], 'C2')
ax3.yaxis.label.set_color('C2')
plt.savefig(filename, bbox_inches='tight')
plt.close('all')
return dict(mean_bp_first=mean_bp_first, mean_bp_last=mean_bp_last, mean_rew_first=mean_rew_first, mean_rew_last=mean_rew_last)
def run(argus):
model, lr, lin_reg, parallel_id = argus
config = DefaultConfig()
config.agent_learning_rate = lr
config.simulation_linear_reg_coeff = lin_reg
config.agent_network_structrue = model
info = dict(learning_rate=lr, linear_reg=lin_reg, architecture=model.__name__, parallel_id=parallel_id)
id_str = '{}_lr{:.1E}_linreg_{:.1E}_{}'.format(model.__name__, lr, lin_reg, parallel_id)
config.result_path = os.path.join(config.result_path, id_str)
os.makedirs(config.result_path, exist_ok=True)
extend_path = lambda x: os.path.join(config.result_path, x)
agent = Agent(config)
train_record, eval_record = agent.learn()
train_record, eval_record = pd.DataFrame(train_record), pd.DataFrame(eval_record)
train_record.to_csv(extend_path('dqn_train_record.csv'))
eval_record.to_csv(extend_path('dqn_eval_record.csv'))
train_info = Figure().plot_training_process_basic(train_record, extend_path('dqn_train_record.png'))
eval_info = Figure().plot_training_process_basic(eval_record, extend_path('dqn_eval_record.png'))
info.update({('trn_' + k): v for k, v in train_info.items()})
info.update({('val_' + k): v for k, v in eval_info.items()})
return info
if __name__ == '__main__':
record = []
test_list = list(itertools.product(
[MLPNetwork_complex, MLPNetwork_Xcomplex],
[2e-5, 1e-5, 5e-6],
[0.1, 0.01],
np.arange(5)
))
parallel = False
if parallel:
pool = Pool(4)
record = pool.map(run, test_list)
else:
record = []
for tmp in test_list:
tmp_res = run(tmp)
record = pd.DataFrame(record)
record.to_csv(os.path.join(DefaultConfig().result_path, 'result_original.csv'))
stats = record.groupby(['learning_rate', 'linear_reg', 'architecture']).agg([np.mean, np.std])
stats.to_csv(os.path.join(DefaultConfig().result_path, 'result_stats.csv'))