Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

📝 update the result of sycamore-n53 m12, m14, m16, m20 #103

Open
Yonv1943 opened this issue Apr 10, 2023 · 3 comments
Open

📝 update the result of sycamore-n53 m12, m14, m16, m20 #103

Yonv1943 opened this issue Apr 10, 2023 · 3 comments
Assignees
Labels
discussion code understanding

Comments

@Yonv1943
Copy link
Collaborator

Yonv1943 commented Apr 10, 2023

result: 以下的结果都需要+log10(2) ,可以参考以下讨论:
#102 (comment)

sycamore Result1 Result2 NumSamples UsedTime
n53 m12 15.478 16.449 185856 56930
n53 m14 16.610 17.748 173568 54152
n53 m16 22.014 32.511 153088 52947
n53 m18
n53 m20 21.782 22.585 148992 58058

sycamore n53 m12

      228       22.789    2.196e+01    TimeUsed     54169
      232       24.986    2.228e+01    TimeUsed     55085
      236       25.889    2.051e+01    TimeUsed     56010
      240       20.804    1.967e+01    TimeUsed     56930
| buffer.save_or_load_history(): Save ./task_TNCO_00/replay_buffer_states.pth    torch.Size([185856, 414])
| buffer.save_or_load_history(): Save ./task_TNCO_00/replay_buffer_scores.pth    torch.Size([185856, 1])

min_score:    15.478
avg_score:    24.392 ±     4.663
max_score:    49.068
best_result:
tensor([235, 371, 215, 137, 246,  62, 320, 178, 147, 325,  31,  17, 274, 333,
        234, 389, 142,  49, 311, 351, 271, 218,  89, 121,  96, 401,  25, 230,
          8, 369, 350, 257, 318, 248, 229, 236,  52,  14, 292, 139, 383, 343,
        207, 195, 209,  47, 394, 355, 329, 149,  53, 130, 372, 398, 273, 339,
        278, 314, 298,  28, 206,  98, 384,  74, 217, 256,  65, 134, 354, 323,
        167, 166, 390, 151, 190, 182, 382, 367, 128,  18,  10, 408, 321, 119,
        344, 100, 199, 120, 181, 405, 179, 288, 411, 140, 330, 305, 264, 336,
        208, 356, 168,  60, 266, 348, 242,  59, 268, 397, 214, 243, 143, 263,
        270,  87, 388, 125,  29, 204,   5,  16, 191, 282, 118, 322,  81, 104,
        211, 228,  34, 296,  76, 152, 114, 392, 406,  24, 171, 244, 116, 306,
        359, 138, 362, 338, 290, 227,  12, 308, 172, 237, 379, 197, 254, 259,
        146, 176, 252, 366, 332,  22,  43, 216,  99,  79, 275, 196,  67, 258,
        342, 294, 373, 198,  56, 283, 108, 346,  64, 175,  88, 102,  27, 135,
        123, 357, 324,  19,   7,  55, 319, 162,   9, 349, 193,  41, 192, 155,
        412, 352,  72, 186,  69, 160, 386, 267, 150, 312, 205,  20, 309, 364,
        272, 164,  82,  23,  33, 358,  68, 107, 345, 285, 226,  95,  85, 145,
        284,  94,  38, 233, 180, 378,   2,  42, 303, 300, 387, 360, 327,  91,
         32, 109, 240, 260, 287, 115, 184,  86, 249,  21, 203,  75,  78, 341,
        317, 286,   1, 276, 253, 131, 251, 241, 328,  36, 315, 310, 110,  11,
        245,  37, 377, 381,  40, 307, 297,   4, 158, 289,  83, 188, 111, 293,
        337, 396, 361, 280,  50, 380, 368,  84,  51,  54, 340, 212, 370, 169,
        154, 326, 385, 255,  44, 201, 232, 103, 353, 409, 262, 156, 291, 101,
        250, 200, 247,  80, 105, 194, 113, 157, 402, 265, 159, 174,  57, 133,
        141, 185,  58, 238, 106, 334, 129, 136, 313, 127,   3, 365,  61, 277,
         73,  92, 391,  46,  71, 213, 231,  26, 399, 144, 210, 304, 375, 374,
        148, 269, 331,  30,  13, 410, 363, 165, 400, 316, 124, 222,  93, 153,
        117,  39,  70, 170,   6, 132,  77, 224,  66,  63,  48, 239, 413, 302,
        376, 219,  45, 126, 173, 221, 223, 183, 404, 177,  97, 279, 187, 407,
        189,  15, 281, 395, 393, 403, 301, 112,  35,  90, 295, 225, 299,   0,
        163, 261, 220, 122, 202, 161, 335, 347], device='cuda:0')

      180       18.700    1.616e+01    TimeUsed     48409
      184       19.871    1.838e+01    TimeUsed     49428
      188       21.397    1.973e+01    TimeUsed     50447
      192       24.096    1.993e+01    TimeUsed     51460
| buffer.save_or_load_history(): Save ./task_TNCO_04/replay_buffer_states.pth    torch.Size([165376, 414])
| buffer.save_or_load_history(): Save ./task_TNCO_04/replay_buffer_scores.pth    torch.Size([165376, 1])

min_score:    16.449
avg_score:    25.135 ±     5.301
max_score:    49.670
best_result:
tensor([396,  88, 166, 366, 408,  81, 167,  51, 243, 238, 148,  90,   5, 222,
        159, 305, 361, 198,  22, 295, 321, 128, 339, 310, 169, 219, 375, 224,
        409, 372,  38, 241, 247, 146, 338, 200,  36,  52,  54, 178, 226, 234,
        173, 192, 117, 260, 108, 278, 387, 147, 245, 399, 227, 275,   1, 329,
        411, 140, 341, 152,  55, 132,  17, 312, 168, 297,  92, 385, 345, 237,
        119, 120, 102, 101,  44,  75,  94,  89, 332, 307,  74,  85, 212, 181,
        118, 348,  23, 412, 413,  69, 196, 386, 235,  43, 383,  45, 210, 172,
        286, 223, 256, 144, 183, 322, 253,  80, 261, 407, 291, 113, 301, 343,
        353, 216, 115, 378, 134, 158,  86,  73, 404,  35,  66, 106, 251, 136,
        161, 137, 274, 246,   8, 162,  97,  32, 157,  18,  91, 303, 410, 349,
        290, 177,  53, 397, 111, 373, 127, 105,  28, 201,  84, 104, 125, 346,
        323,  49, 347, 271, 304, 355, 208, 309, 124,  37, 344, 306, 360, 389,
         31, 377, 392,  30,  39, 284, 163, 351,  10, 255, 395, 186, 382, 184,
         82, 126, 130, 330, 142, 264, 342, 296, 123, 250,  20, 257, 313,  46,
        268,  34, 289, 170, 308, 380, 150, 265, 371, 213,  93, 154, 333, 262,
         61, 151, 232,  87,  56, 285, 206, 267, 263, 340, 217, 114, 317, 107,
         63, 390, 121, 139,   6, 194, 225, 336, 242, 112, 320, 356, 248, 391,
        283, 379,  29,  83,  64, 281, 292, 135,  42, 276, 324,  33, 402, 103,
        204, 314, 156, 193, 364,  68, 244, 352, 110, 369, 187, 272, 214, 365,
        252, 393, 359, 211, 164, 368, 400, 195,  40, 116, 279, 205, 259, 337,
        319, 199,   7, 240,  77,  72, 370, 209, 145, 122, 207,  60, 405, 327,
        160,  21, 273,  62, 334, 406, 100,  14, 197,  26, 311, 403,  16, 354,
        129, 269,  71, 109, 315, 374, 203, 266, 220, 335, 175, 230, 302, 202,
         19, 376, 153, 174, 328, 388, 188,  96, 138,  98, 287,  25, 326, 190,
        191, 239, 288,  76,  50, 179, 299,  48,   3,  78,  11, 228, 280,  57,
        215, 282,   2, 398, 149,  15,  47, 182, 300,  79, 236,  12, 249, 233,
        131, 218, 362, 363,  58,  67, 357, 155,   0,  41,  24, 270, 293, 325,
        229, 133,   9,  13, 277,   4, 298, 254,  65, 171, 358, 350, 180, 185,
        316, 367, 221, 331, 143,  59, 258, 394, 165, 176, 401, 318, 189,  70,
         27, 381, 231, 294, 141, 384,  95,  99], device='cuda:4')
@Yonv1943
Copy link
Collaborator Author

Yonv1943 commented Apr 10, 2023

sycamore n53 m14

      180       31.057    3.008e+01    TimeUsed     50815
      184       38.548    3.388e+01    TimeUsed     51936
      188       38.586    3.213e+01    TimeUsed     53049
      192       40.670    3.496e+01    TimeUsed     54152
| buffer.save_or_load_history(): Save ./task_TNCO_05/replay_buffer_states.pth    torch.Size([165376, 484])
| buffer.save_or_load_history(): Save ./task_TNCO_05/replay_buffer_scores.pth    torch.Size([165376, 1])
num_train: 165376
min_score:    16.610
avg_score:    31.641 ±     8.670
max_score:    55.691
best_result:
tensor([472,  25, 247,  61, 397, 262, 415, 217,  83, 444,  44, 439,  65, 325,
        169, 277, 436, 178, 113, 337, 421,  90,  74, 120, 463, 107,  54,  85,
        242, 140, 284,  50, 137, 268, 333, 331,  29,  57, 372, 168, 426, 468,
        354,  19,  95, 462, 478, 228, 132,  37, 166, 417, 483,  28, 265,  78,
        190,  11, 413,  56, 449, 139, 420, 310, 469, 423,  46, 311, 473, 435,
        105, 264,  13,  10, 273, 252, 257, 390,  24,  23, 315, 279, 432, 470,
        309,  70, 398, 158, 330, 117,  49, 127, 396, 111, 306, 165, 115, 451,
        313, 477, 154,   5, 351, 112,   4,  18,  64, 334, 394, 293, 271, 185,
        291, 123, 267, 285, 431, 230, 256,  94, 141,  76, 312, 314, 210, 101,
        152, 191, 237, 365, 136, 440, 479,  12, 183, 251, 186, 419, 222,  48,
        459, 130, 452, 355,  16, 453,  20, 188, 290, 209, 263,  92, 294, 434,
        300, 344, 427, 322, 248,  89, 457,  77, 204, 181, 393, 177, 100, 464,
         88, 246, 148,  27, 445, 225, 410, 134, 121, 475, 481, 382, 412, 348,
        138, 170, 253, 245, 388, 467, 401, 131,  91,  80, 332, 395, 409, 180,
        326,  53, 305, 455, 448, 298, 224,   1,  38, 159, 411, 189, 450,  36,
        424, 200, 389, 167, 163, 150,  21,  93, 261, 270, 145, 308, 207, 366,
         55, 383, 236, 255,  59, 233, 194, 377, 274, 405, 404, 289,  72, 342,
        162, 384, 227, 428,  60, 283,  35, 122, 403, 379, 304,  22, 124,  97,
        301,  26, 244, 349,  81, 429, 174, 171,  52, 418, 195, 460,  69, 218,
        303, 387, 338, 425, 266, 297, 316, 125, 281, 128, 340, 280, 299, 149,
        238, 184, 269, 205,  82, 482, 231, 116,  32, 386, 216, 360, 438,  58,
        392, 110, 471, 282, 375, 229, 160, 381, 461,  43, 430, 443, 321, 402,
        358, 276, 215, 118, 135, 370,  67, 129, 109, 433, 323, 339, 235, 208,
         75,  42,  73, 239, 318, 320,   0,  41, 223, 153, 466,  68, 416, 206,
        272, 442, 400, 378, 254,  84,  86, 437, 292, 221, 376, 199, 441, 341,
        454, 119,  66, 104, 249,  34, 407, 259, 346,   9, 356, 307,  71,  17,
        380, 335, 203, 374, 156, 361, 260, 147,   3, 106, 278, 202, 182, 258,
        319, 143,  45, 363, 447, 275, 456, 324, 406,  47, 196,   7, 114, 474,
        151, 179, 220,  31, 155, 133,  15, 175, 295, 329, 327, 362, 243, 192,
        172, 476, 368, 328, 480, 144, 317, 353, 234, 161, 345, 213, 391, 212,
        288, 232, 369, 164, 226,  87, 198, 446, 197,  63, 103,   6,  62, 187,
        408,  33,   2, 352, 211, 108, 364,  51, 286, 142, 176, 465,   8, 350,
        336, 458, 157, 214, 371, 399, 241, 193, 422, 302, 201, 414, 385, 357,
         98,  96,  39,  79, 146, 126, 347, 102, 367, 250, 373, 343, 240,  99,
        219,  40, 296, 173,  30, 287, 359,  14], device='cuda:5')

| buffer.save_or_load_history(): Save ./task_TNCO_01/replay_buffer_states.pth    torch.Size([173568, 484])
| buffer.save_or_load_history(): Save ./task_TNCO_01/replay_buffer_scores.pth    torch.Size([173568, 1])
num_train: 173568
min_score:    17.748
avg_score:    33.511 ±     7.540
max_score:    55.088
best_result:
tensor([ 62, 192, 176, 225, 412, 167,  55, 358,  44, 413, 223, 440, 387, 468,
        315,  25, 275, 349, 309, 253,  75, 483, 273, 403, 443, 109, 448, 170,
        416, 180, 245,  82, 110, 409,  76, 236,  59, 249, 480, 436, 124, 438,
        472, 205, 133, 336, 479, 467, 404, 129,  41, 353, 343, 284, 475, 392,
        421,  15, 281, 474,  73, 324, 127, 450, 267, 272, 179, 201, 365, 210,
        202, 292, 466, 132, 368,  17, 263, 265, 199, 103, 391, 369, 381,  28,
        137, 140,  89, 321, 340, 471, 323, 242,  34, 386, 300, 372, 370, 366,
        117, 454, 226, 318, 338,  52, 191, 195,  98, 458, 168, 341, 294, 106,
        235, 143,  86, 112, 282, 390, 243, 447, 411, 260, 111, 469, 394, 203,
         35,  99, 431, 423,   0, 339, 432, 385,  94, 446,  74, 174, 382, 427,
        335, 400, 279, 172, 121, 476, 445, 231, 128, 415, 308, 439,   2, 175,
        345, 456, 342, 303, 364, 384, 306, 460, 452, 459, 157, 395, 389, 177,
         61, 414,  22, 270, 244, 376, 104, 259, 173, 434, 429, 264, 331, 208,
        189,  65, 453, 330, 407, 379, 332, 280, 250, 347, 317, 251, 402, 118,
        478, 302, 257,   1, 266, 285, 136, 399,  38, 252,  45, 151, 451, 417,
        360, 313, 293, 425, 482, 120,  49,  31, 477, 305,  54,  81, 367, 307,
         47, 219, 152, 229, 420, 119, 378, 276, 182, 254, 256, 138, 422, 406,
        261, 371, 319, 433,  57,  78, 134, 209, 334, 388, 304, 144, 437, 145,
        283, 163, 135, 227, 424,  96, 455, 333,   9,  13,  48, 396, 158,  50,
        204, 419,  87,  83, 314,  80, 147, 430, 237, 207, 269, 258, 310, 102,
        380, 217, 435, 373, 463, 461, 286, 350,  14, 232, 326, 255, 290, 222,
        383,  71, 320, 470,  46,  51, 405, 291, 344, 186, 105, 113, 361, 374,
        214, 296,  18, 287, 441, 166, 114, 262,  21,  67, 398,  20, 162, 221,
        442,  33, 329, 215,  77,  29, 278, 125, 246, 107, 218,   3,   7, 122,
        240, 101, 481, 239,  53, 188, 426, 131, 464, 220, 297, 473, 213, 149,
        377,  90, 130, 316, 354, 211, 288, 116, 159, 212, 449, 187,  91,  16,
         56, 348, 274, 190, 100,  84,  36, 228,  24, 301,  37, 295,   6, 351,
         79, 139,  63, 156, 462,  40, 418, 271,  97,  32,  43, 312, 363, 465,
        178, 181, 154, 241, 153,  23,  19, 224,  12,  64, 298, 197,  95,   8,
         26, 277, 357, 108, 184,  68, 428, 311, 327, 142, 233,  72, 123,   4,
        410, 289, 238, 248, 299, 408,  58, 196, 148,   5, 194,  66, 401, 141,
         60, 397, 444, 457, 216, 234,  10, 362, 356,  27, 126, 164, 328, 115,
        322,  30, 169, 183, 171, 268, 337,  42,  92, 247, 185,  93, 206, 165,
        161,  85, 355, 160, 346, 359, 325, 150,  88, 200,  69, 155, 146,  11,
        393,  70, 352, 230,  39, 375, 193, 198], device='cuda:1')

@Yonv1943
Copy link
Collaborator Author

Yonv1943 commented Apr 10, 2023

sycamore n53 m16

      164       27.696    2.399e+01    TimeUsed     49556
      168       27.998    2.742e+01    TimeUsed     50687
      172       28.348    2.523e+01    TimeUsed     51817
      176       28.033    2.729e+01    TimeUsed     52947
| buffer.save_or_load_history(): Save ./task_TNCO_06/replay_buffer_states.pth    torch.Size([153088, 585])
| buffer.save_or_load_history(): Save ./task_TNCO_06/replay_buffer_scores.pth    torch.Size([153088, 1])
num_train: 153088
min_score:    22.014
avg_score:    32.901 ±     8.477
max_score:    66.528
best_result:
tensor([ 34, 111, 259, 102,   5, 546, 226, 129, 485, 194, 347, 115, 434, 480,
         89,   8, 432, 100, 136, 288, 575,  24,   9,  84, 353, 117, 556, 348,
         13, 240,  50, 142,  94, 415, 214, 383, 163, 337, 501, 137, 171, 544,
        559, 525,  87,  73, 298, 384,  83, 296,  25,  35, 155, 520,  79,  93,
         77, 449, 286, 334,   7, 220, 254, 518, 173,  37, 175, 253, 157, 248,
        321,  38, 529, 169,  81, 300, 149,  72, 369, 176, 358,  68, 503,  16,
        301, 304, 440,  45, 161, 164,  12, 103,  63, 506, 416, 104,  76, 108,
         10,  66,  19, 165,  32, 486,  49, 195, 392, 121, 533, 473,  40,  48,
        436, 507, 577, 126, 295, 492, 355, 297, 252,  18,  42, 477,  86, 562,
        505,  15, 310,  56, 570, 275, 460,  78, 174, 314,  82, 185,  59, 251,
         33,  67, 459, 409, 499, 130, 580, 187, 183, 114, 131, 203, 213, 210,
         55, 456, 557, 410, 509,   6, 154,  44, 209, 170,  91,  29, 268, 179,
         30,  62, 190,  22, 168, 258, 274,  85, 330, 151, 308, 116, 225, 217,
         39, 106, 345,  46, 469, 140, 202, 234, 419,  36, 521, 579, 201,  20,
        435, 290, 223,  92, 272, 364,  58,  23, 303, 294, 189, 124, 576, 244,
        282, 316, 429, 583, 237, 166, 371, 255, 153, 186, 156, 243, 522, 306,
         27, 167, 508, 158, 177,   1, 249, 452, 277, 534, 178, 470, 401, 229,
         95, 379, 426,   3, 211, 540, 262, 327, 250, 447, 284, 430,  74, 199,
        263, 230, 221,  90,  53, 198, 487, 389, 457, 519, 132,  57,  61, 107,
        476, 417,  88, 438, 498, 312, 224, 340,  28, 196, 118, 554, 569, 390,
        241, 152, 465, 188, 502,  11, 242, 537, 299, 451, 260,  97, 289, 500,
        105, 135, 515, 208,  41, 311, 245, 582,  69, 479, 464, 424,  99, 150,
        109, 514,  52, 404, 346, 560, 418, 336, 101, 302, 467,   4, 542, 328,
        391,  26, 207,  96, 402, 191, 405,  51, 394, 581, 439, 536, 511, 494,
        535, 568, 239,  17, 322, 551,  31,  80, 138, 122, 552, 112, 555, 162,
        276, 145, 228, 359,   2, 280, 414, 285, 516, 442, 566, 139, 474, 119,
        482, 382, 386, 238, 206,  54, 512, 431, 212, 216, 375, 335, 446,  70,
        397, 193, 549, 293,  60, 541, 292, 219, 481, 584, 472, 147,  43, 325,
        388, 413, 172, 133, 381, 463, 543, 146, 396, 160, 200, 437, 399, 338,
        271, 278, 222, 315, 313, 144, 455, 215, 326, 571, 125, 123, 287, 517,
        497,  71, 184, 548, 233, 256, 247, 339, 393, 530, 197, 235, 361, 291,
        269, 550, 344, 567, 134, 370, 513, 532, 496, 351, 283, 281, 428, 333,
        433, 407, 564, 331, 458, 504, 180, 342, 143, 400, 218, 323, 547, 526,
        350, 265, 110, 488,  64, 478, 398, 454, 420, 489, 231, 246, 354, 362,
        329, 450, 368, 468, 376, 538, 483, 493,  21, 412, 373, 528, 318, 510,
        423, 471, 356, 453, 377, 181, 319, 352, 523, 411, 267, 374, 578, 563,
        425, 558, 363, 367, 406, 490, 484, 141, 422, 279, 320, 257, 357, 462,
        531, 527,   0, 204, 273, 475, 261, 408, 192, 495, 305,  47, 574, 443,
        113, 444, 309, 236, 378, 466, 448, 205, 128, 232, 573, 545, 227, 264,
         14, 445,  98, 365, 343, 270, 403, 349, 395, 159, 341, 266, 317, 385,
        553, 324, 539, 387, 332, 427, 441, 380, 561, 461, 127, 366, 524, 491,
        182, 360, 148, 307,  65, 565, 372, 120,  75, 572, 421],
       device='cuda:6')

      148       41.338    4.493e+01    TimeUsed     51655
      152       41.338    4.496e+01    TimeUsed     52946
      156       41.338    4.490e+01    TimeUsed     54235
      160       41.338    4.495e+01    TimeUsed     55519
| buffer.save_or_load_history(): Save ./task_TNCO_02/replay_buffer_states.pth    torch.Size([124416, 585])
| buffer.save_or_load_history(): Save ./task_TNCO_02/replay_buffer_scores.pth    torch.Size([124416, 1])
num_train: 124416
min_score:    32.511
avg_score:    45.043 ±     3.887
max_score:    63.216
best_result:
tensor([272, 432, 175, 301,  92,  35, 338, 430, 482, 223,  57, 298, 544, 524,
         89, 277, 147,  63,  96, 526,  53, 459, 166, 484,  16,  78, 105, 391,
        258,  59, 214, 344, 374, 260, 576, 573, 230, 163, 393, 394, 247, 503,
         61, 186, 559, 468,  84, 375, 512,  43, 499, 100, 434, 396, 362, 115,
        322, 328, 521, 197,  90,  69, 557, 456,  30, 469, 245, 324, 577, 201,
        404, 407, 358, 178, 356, 240,  10, 498, 192, 364, 545, 487,  87, 465,
        141, 269, 540, 529,  98, 299, 122, 562,  11, 226, 509, 537,  56, 547,
        159, 120, 363, 383,  44, 158, 399, 496,  17, 392, 238, 118,  21, 458,
        135, 477, 292, 339, 382, 486, 131, 489, 209, 551,   6, 132,  74, 443,
        148, 203,  29, 333, 531, 107, 142, 143, 232, 287, 329, 108, 334, 471,
        130, 532, 208, 241, 450, 513, 207, 307, 311, 104, 371, 257, 161,  67,
        229, 470,   7, 481, 190, 234, 410, 134, 253,  12, 502,  51, 368, 366,
        151, 273, 316, 560, 571, 376, 504, 478, 289, 427, 262,  31, 568, 294,
        473,  81, 506,  97, 536,  45,  83, 348, 167, 525, 215, 409, 405,  13,
        523, 553, 138, 291, 565, 424, 109, 541, 255,  28, 555, 187, 491, 429,
        189, 220,  94, 288,  24, 516, 554, 490, 530, 421, 466, 351,  99, 580,
         58, 435, 442, 461, 200, 389, 310, 155, 497, 480, 317,  42,  26,  55,
        542,  25,  37, 390,  39,  65, 515, 173, 110, 402, 128, 121, 267, 236,
        448, 176, 422, 567, 341, 403, 462, 250,   5, 268, 218, 517,  14, 263,
        412, 373, 231, 282, 385,  41, 204, 248, 500, 146, 103, 418, 538, 210,
        271, 274, 377, 290,  79, 438, 347, 534, 549, 352, 244,   9,  22, 264,
         93, 284,  34, 372, 441,  32, 357, 225, 350, 233, 460,  68, 297, 179,
        395, 314, 444, 171,   2, 194, 119, 400, 401, 417,  36, 451, 343, 242,
        464, 453, 527, 423, 124, 283, 408, 219, 494,  19, 227, 514, 202, 275,
        381, 455, 505, 420,  20, 413,  75, 380, 137, 397, 359, 126, 495, 205,
        349, 123, 337, 312, 106, 566, 419, 340, 361, 533, 369,  50, 387, 452,
         70, 346, 406, 145, 164, 222, 501, 326, 156, 384,  86, 518, 116, 180,
        508, 546,  72, 153, 212, 243, 426, 335, 184, 216, 575, 556, 353, 446,
        327, 181,  54, 305,  80, 398,  71, 574, 144, 416, 439, 188, 437,  48,
        150, 296, 309,  52,  60, 237, 325, 206, 162, 252, 433, 251,  49, 196,
        428, 195, 476, 217, 111,  18, 112, 261, 169, 415, 133, 519, 259, 522,
        127, 152, 386,  76, 475, 510,  62, 457, 102, 535, 454,   3, 300, 431,
          4, 185, 388, 479, 315, 246, 125,  15, 285, 488, 293, 308, 213, 539,
        507, 286, 276, 511, 280,  91, 129,  85, 191, 140, 414,  88,  73, 569,
        550, 154, 306, 198, 483, 168, 447, 436, 279, 548, 320, 331, 228, 174,
        170, 463, 221, 360, 183,   0, 467,  40,  66,  27, 165, 224, 266, 342,
         95, 543, 440, 304, 583, 572, 321,  64, 303,   1, 570, 492, 579, 235,
        149, 367, 330, 113,  77,  47, 578, 254, 313, 193, 411, 449, 365, 160,
        552, 355,  82, 564, 199,  33, 256, 319, 425, 114, 332,  23, 139, 117,
        295, 354, 270, 472,  46, 528, 265, 101, 379, 558, 182, 157, 323, 581,
        249, 177,   8, 561, 211, 584, 378, 336, 318, 563, 370,  38, 445, 278,
        239, 172, 520, 474, 302, 281, 345, 493, 582, 136, 485],
       device='cuda:2')

@Yonv1943
Copy link
Collaborator Author

Yonv1943 commented Apr 10, 2023

sycamore n53 m20

      132       51.615    5.084e+01    TimeUsed     45091
      136       60.517    5.007e+01    TimeUsed     46474
      140       55.095    5.104e+01    TimeUsed     47911
      144       49.479    4.995e+01    TimeUsed     49360
| buffer.save_or_load_history(): Save ./task_TNCO_07/replay_buffer_states.pth    torch.Size([128512, 754])
| buffer.save_or_load_history(): Save ./task_TNCO_07/replay_buffer_scores.pth    torch.Size([128512, 1])
num_train: 128512
min_score:    21.782
avg_score:    42.245 ±    14.739
max_score:    81.880
best_result:
tensor([  7, 472, 540, 176, 184, 170,  16, 649, 433, 294,  20, 536, 159, 732,
        239, 233, 513, 616, 655, 665, 696, 116,  70,  30, 382,  52, 362, 293,
        272, 497,  99, 288,  36, 134, 600, 548, 594,  21, 157, 331, 624, 520,
        558,  85,  81,  35, 752, 123, 286, 658, 417,  40, 353, 583, 264, 675,
        436, 736,  61, 753, 494, 202, 747, 140,  22, 461, 717, 330, 617, 237,
        670,   8, 644, 674, 599, 221,  78, 462, 457, 621, 348,  87, 240, 299,
         88, 152, 114, 195,  13, 634, 618, 700, 210, 663,  47, 751, 241, 652,
        408, 137, 103, 302, 329, 542,  62,  95, 724,  55, 470, 175, 439, 585,
        366,  53,  54, 297, 500, 280, 373, 476, 650, 706, 393,  58,  39, 105,
        147, 591,   6, 703, 282, 409, 667, 686, 489,  29, 250, 110, 466, 231,
        209, 654, 259,  11,  93, 361, 121, 146, 746, 407,  63, 501, 639, 350,
        458, 718, 452, 672, 314,  72, 482,  42, 571,  17,  19, 699, 128, 248,
        316, 298, 283, 573, 588, 177, 648, 593, 543, 132, 739, 122, 442, 130,
        199, 702, 212,  92, 357, 628, 263, 343,  50, 113, 290, 664, 691,  69,
        136, 406, 380, 309,  43, 631, 481, 115, 638,  51, 189, 414, 666, 144,
        281, 312, 656, 450, 173, 518, 449, 623, 172, 255, 245, 491, 635, 161,
        325, 226,  10, 561, 557, 590, 659,  56,  71, 563,  97, 580, 677, 689,
         26, 605, 229, 200,  64, 394, 308, 211, 311, 473, 160,  76, 695, 426,
        187, 106, 196, 586,  80, 225, 632, 749, 443, 253,  48,   5,  24, 460,
        155, 535, 640,  14, 169,  28, 574, 611,  90, 307, 102, 614, 636, 224,
         98, 399, 714, 630, 722, 685, 688, 733, 744, 531, 582, 234, 377, 295,
        701, 397, 587, 419, 738, 488, 727, 748,  83, 218, 653, 487, 745, 499,
        673, 669, 301, 525, 519, 220, 391, 188, 705, 533, 579, 287, 423, 205,
        277, 117, 538, 602, 597,   0, 246,  60, 306,  32, 179, 186, 104, 336,
        742, 164, 564, 151, 740, 680, 284, 615, 413, 107, 126, 465, 296,  45,
        704, 683, 731, 338,  34, 396, 206, 710, 687, 507, 534, 201,   1, 578,
        529,  73, 238, 646,  84, 344, 185,   3, 569, 455, 651, 257, 235, 537,
        467, 360, 438, 204, 149, 244, 562, 613, 125, 468, 448, 459, 182, 135,
         89, 498, 174, 347, 165, 641,  12, 425, 349, 625, 265, 642, 303, 693,
        715, 216, 322, 608, 729, 269, 698, 719, 351, 671, 647, 446, 523, 428,
        345, 508, 629, 566, 403, 496, 289, 405, 668, 150, 440, 124, 643, 555,
        575,  31, 112, 620, 274, 682, 552, 390, 215, 511, 681, 305, 469, 383,
        598, 463, 708,  94, 207, 256, 424,  15, 577, 725, 378, 434, 193, 387,
        291, 120, 219, 502, 214, 372, 324, 544, 432,  57, 661, 119, 127, 431,
        493,   9, 633, 713, 388, 168, 365,  75, 512, 415, 367,  46, 730, 480,
        252, 363, 332, 514, 368, 505, 441, 258, 131, 679,  96, 567, 154,  59,
        516, 249, 340, 697, 213, 352, 418, 273, 356, 384, 435, 261,  33, 260,
        741, 223, 622,  66, 515, 167,  38, 129, 547, 158, 524, 743,  18, 232,
        707,  82, 320, 278, 141, 262, 416, 607, 191, 503, 203, 589, 437, 581,
        190, 554, 549, 402, 358, 317, 242, 208, 180, 601, 333, 726, 381, 148,
        197, 592, 471, 156, 556, 392, 326, 153, 522, 268, 572, 657, 477, 716,
        545, 398, 750, 389,  77, 371, 300,  27, 596, 101, 610, 532, 485, 712,
        690, 143, 342, 411, 270, 464, 341, 728, 490,  44, 109, 227, 404, 711,
        456, 474, 737, 709, 254, 236, 721, 521, 546, 527, 395, 385, 276, 285,
         65, 484, 412, 346, 163, 570, 660, 319, 162, 483, 327, 504, 138, 429,
         67, 445, 645, 420, 506, 479,  68, 478, 375, 410, 145, 108,  49, 228,
        453, 335, 530, 517, 553, 626, 133, 510, 142, 568,  74, 694, 528,  91,
        279, 619, 684, 334, 217, 495, 576, 386, 181, 376, 271,  23, 627,  41,
        541, 194, 267, 318, 447, 444, 734, 509, 637, 337, 310, 339, 379, 171,
        251, 292, 198, 400, 321, 735, 328, 354, 374, 662, 118, 430, 475, 192,
        539, 178, 247, 427, 166, 139, 565, 364, 492, 584,  25, 526, 692, 720,
        401, 486, 230,   2,   4, 606, 595, 275, 678,  37, 100, 676, 266, 723,
        304, 604, 422, 355, 451, 551, 359, 559, 609,  79, 369, 612, 183, 222,
        550, 323, 370, 560, 603,  86, 315, 111, 313, 421, 454, 243],
       device='cuda:7')

      180       24.698    2.255e+01    TimeUsed     54635
      184       23.457    2.302e+01    TimeUsed     55779
      188       23.251    2.314e+01    TimeUsed     56921
      192       23.210    2.244e+01    TimeUsed     58058
| buffer.save_or_load_history(): Save ./task_TNCO_03/replay_buffer_states.pth    torch.Size([148992, 754])
| buffer.save_or_load_history(): Save ./task_TNCO_03/replay_buffer_scores.pth    torch.Size([148992, 1])
num_train: 148992
min_score:    22.585
avg_score:    29.913 ±     6.161
max_score:    74.354
best_result:
tensor([174, 109, 696, 219, 728, 499, 271,  25, 198, 661, 273, 371, 639, 709,
        587, 704,  63, 386,  65, 529, 721, 606, 677, 274, 657, 693, 135, 479,
        619, 257, 141,  36, 665, 221, 613, 368, 189, 396, 656, 534, 706, 726,
        622, 452, 735, 710, 659, 634, 336, 694, 275, 747,  76, 592, 100, 545,
        685, 687, 537, 580, 616,   6,  31, 701, 247, 217, 101, 690,  82,  89,
        635, 543, 435, 598, 720, 733,  47, 289, 484, 723, 129, 199, 708, 680,
        234, 267, 551, 427, 583, 751, 476, 638, 251, 448, 290, 642, 472, 169,
        461, 303, 363, 610, 575,  34, 670,  17, 550, 489, 729, 238, 655, 526,
        308, 212, 516, 381, 513, 459,  48, 117, 699, 487, 581,  15, 650, 707,
        446, 549, 584, 514, 542, 132, 666, 664, 679, 481, 152,  12, 668, 722,
        528, 507, 160, 540, 127, 566, 719, 328, 498, 495,  58, 623, 387, 122,
        500, 740, 466, 496, 743, 682, 501, 102, 269, 434, 567, 350, 225, 739,
        457, 648, 126, 594, 378, 333,  20, 654,  55, 480, 404,  27, 462,  59,
        643, 177, 520, 698, 423, 230, 231, 653, 471, 574, 713, 260, 585, 107,
        737, 261, 125, 742, 475, 552, 155, 366, 605, 437,  18, 397, 439, 689,
        440, 676, 445, 450, 558, 614, 620, 324, 724, 546, 154, 424, 458, 315,
        521, 658, 678,   2, 660, 384, 342, 425, 186,  74, 474, 104, 531, 732,
        241, 403, 727, 544, 478, 151, 712, 253, 607, 673, 460, 688, 150, 506,
        612,  71, 357, 414, 595, 103, 662,  56, 184, 441, 220, 512, 647, 505,
        391, 530, 252, 358, 222, 700, 465, 429, 292, 173, 139, 149, 752, 625,
        319, 519, 536, 442, 485, 493, 675, 268, 603, 123, 411, 301, 143, 556,
        398, 633,  79, 374,  23, 624, 503, 266, 525, 232, 277, 158, 118, 428,
        121, 110, 340, 373, 589, 553, 280, 278, 144, 377, 146, 114, 159,  54,
        380,  78,  62, 563, 343, 108, 432, 686, 361, 214, 750, 156, 283, 572,
        579,  32, 630, 182, 286, 346, 646, 590,  53, 482, 745, 577, 467, 120,
        112, 554, 671, 578, 235,  51, 248, 748, 692, 591,  35, 210,  88, 749,
         92,  67, 330, 296, 299,  14,   4, 443,  52, 229, 179, 548, 753, 444,
        138, 628, 262, 611, 228, 180, 325, 399, 718, 645, 497, 197, 137, 504,
        420, 300, 409, 352, 178,   3, 621, 245, 438, 491, 532, 364,  22, 205,
        284, 293, 629, 407, 326,  96, 741, 691,  44, 270, 641, 559, 515, 695,
        233, 236, 307, 569, 702, 672, 632, 744, 111, 711, 187,  46, 145, 667,
        637, 421, 181, 317, 116, 164, 483, 683, 239,  98, 320, 168, 356,  33,
        573,  39, 412, 115,  49, 402, 738, 599, 130, 298, 570,  28, 568, 608,
         60, 674, 140,  26, 533,  50, 736,  40, 627, 162, 517,  80, 463,  91,
        418, 631,  68,  72, 451, 341, 615, 564,  57, 172, 408, 431,  90, 309,
        714, 557,  43, 502, 602, 285, 249, 243, 617, 447, 183, 494, 716, 597,
        287, 510, 640, 196, 522, 347,  64,  97, 362, 383,  83, 304, 405, 468,
        147, 413, 348, 191, 426, 360,  95, 555, 524,  29, 565, 337, 681, 600,
        226, 527,  16, 410, 746, 216, 453,  11, 393, 389,   5, 106, 588, 394,
        596, 684, 539, 433, 382, 312,  10, 354, 314, 535, 470, 369, 244, 282,
        255, 417,  87,  94, 626, 105, 201,  69, 188, 652,  24, 593, 669, 209,
        547, 264, 200, 379, 166, 311, 223, 609, 338,  19, 165,  37, 204, 335,
        492, 207, 203, 250, 636, 464, 276, 355,  73, 456, 224,  77, 119, 390,
        725,   0, 351, 124, 509,  42, 436, 601, 175, 734, 246, 586, 192, 302,
        508, 649, 430, 703, 194,  41, 185, 511, 316, 157, 240,  66, 469, 281,
        604, 353,   8, 288, 345, 218, 136,  45, 717,  75, 171, 242, 237, 488,
        477,  81,  86, 651, 518,  99,  30, 571,  61,   9, 705, 259, 322, 375,
        359, 265, 134, 490, 331, 254, 161, 193, 305, 419, 195, 385,   7, 327,
        318, 560,  93, 372, 306, 392, 538, 211, 395, 167,  21, 370,  70, 344,
        334, 422, 202, 576, 339, 170, 310, 523, 697,  85, 473, 215, 227, 618,
        148, 163, 291, 449, 279, 313, 455, 176, 142, 256, 365, 561, 367, 131,
        663, 258,  13, 329, 213, 486, 323, 582, 415, 541,  38, 113, 133, 321,
        731, 128, 644, 376, 295, 349, 208, 401,  84, 715, 332, 416, 206, 406,
        730, 297, 454,   1, 190, 153, 272, 263, 294, 400, 562, 388],
       device='cuda:3')

@Yonv1943 Yonv1943 changed the title 📝 update the result of sycamore-m53 n12, n14, n16, n20 📝 update the result of sycamore-n53 m12, m14, m16, m20 Apr 10, 2023
@YangletLiu YangletLiu added the discussion code understanding label Apr 10, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
discussion code understanding
Projects
None yet
Development

No branches or pull requests

3 participants