-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathinception_resnet_v2_finetune.py
200 lines (161 loc) · 5.78 KB
/
inception_resnet_v2_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import math
import numpy as np
from keras.layers import (
Dense,
Activation,
Dropout,
Flatten,
AveragePooling2D,
)
from keras.optimizers import Adam
from keras.models import Model
from keras.callbacks import LearningRateScheduler
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras import backend as K
from keras.utils.generic_utils import get_custom_objects
BATCH_SIZE = 32
VALIDATION_SPLIT = 0.1
N_CLASSES = 16
EPOCHS = 7
# Swish Activation Function
def swish(x):
return K.sigmoid(x) * x
get_custom_objects().update({"swish": Activation(swish)})
# Learning Step Decay by 10e-1 after every 4 epochs
def step_decay(epoch):
initial_lrate = 0.001
drop = 0.1
epochs_drop = 4.0
lrate = initial_lrate * math.pow(drop, math.floor((epoch) / epochs_drop))
return lrate
# Calculates Precision Accuracy
def precision(y_true, y_pred):
"""Precision metric.
Computes the precision, a metric for multi-label classification of
how many selected items are relevant.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
# Calculates Recall Accuracy
def recall(y_true, y_pred):
"""Recall metric.
Computes the recall, a metric for multi-label classification of
how many relevant items are selected.
"""
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
# Calculates F1 score
def f1(y_true, y_pred):
def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def recall(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2 * ((precision * recall) / (precision + recall + K.epsilon()))
# Inception_ResNet_V2 model define
def build_inception_resnet_V2(
img_shape=(416, 416, 3),
n_classes=16,
l2_reg=0.0,
load_pretrained=True,
freeze_layers_from="base_model",
):
# Decide if load pretrained weights from imagenet
if load_pretrained:
weights = "imagenet"
else:
weights = None
# Get base model
base_model = InceptionResNetV2(
include_top=False,
weights=weights,
input_tensor=None,
input_shape=img_shape
)
# Add final layers
x = base_model.output
x = AveragePooling2D((8, 8), strides=(8, 8), name="avg_pool")(x)
x = Flatten(name="flatten")(x)
x = Dense(
512,
activation="swish",
name="dense_1",
kernel_initializer="he_uniform"
)(x)
x = Dropout(0.25)(x)
predictions = Dense(
n_classes,
activation="softmax",
name="predictions",
kernel_initializer="he_uniform",
)(x)
# This is the model that will be trained
model = Model(inputs=base_model.input, outputs=predictions)
# Freeze some layers
if freeze_layers_from is not None:
if freeze_layers_from == "base_model":
print(" Freezing base model layers")
for layer in base_model.layers:
layer.trainable = False
else:
for i, layer in enumerate(model.layers):
print(i, layer.name)
print(" Freezing from layer 0 to " + str(freeze_layers_from))
for layer in model.layers[:freeze_layers_from]:
layer.trainable = False
for layer in model.layers[freeze_layers_from:]:
layer.trainable = True
# Compiling Model with Adam Optimizer
adam = Adam(0.0001)
model.compile(
loss="categorical_crossentropy",
optimizer=adam,
metrics=[precision, recall, f1]
)
return model
if __name__ == "__main__":
# Loading Cropped Images for Training resized to 416x416
# x_train_crop = np.load('X_train_crop.npy')
# y_train_crop = np.load('Y_train_crop.npy')
# y_train_crop = np_utils.to_categorical(y_train, N_CLASSES)
# Loading Original Images for training resized to 416x416
# x_train_original = np.load('X_train.npy')
# y_train_original = np.load('Y_train.npy')
# x_valid = np.load('X_valid.npy')
# y_valid = np.load('Y_valid.npy')
# Loading Original Images for Testing rsized to 416x416
x_test = np.load("X_test.npy")
y_test = np.load("Y_test_categorical.npy")
# print(x_train.shape, y_train.shape)
# Learning Rate Schedule
lrate = LearningRateScheduler(step_decay)
# Loading Model
model = build_inception_resnet_V2()
# Loading Trained weights
model.load_weights("inception_resnet_v2_images+crops.h5")
# Model Fitting with 10% of the images used for Validation purpose
# history = model.fit(x_train_original, y_train_original,
# batch_size=BATCH_SIZE,
# epochs=EPOCHS,
# verbose= 1,
# # steps_per_epoch=x_train.shape[0]//BATCH_SIZE,
# callbacks = [lrate],
# validation_split=VALIDATION_SPLIT
# )
# Save Model Weights
# model.save_weights('inception_resnet_crops.h5')
# Calculate score over test data
score = model.evaluate(x_test, y_test, verbose=1, batch_size=BATCH_SIZE)
# Prints Precision, Recall, and F-1 score
print(score)