-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvautoencoderimage.py
76 lines (57 loc) · 2.05 KB
/
convautoencoderimage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import keras
from keras import layers
input_img = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
encoded = layers.MaxPooling2D((2, 2), padding='same')(x)
#x = layers.Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = layers.UpSampling2D((2, 2))(encoded)
decoded = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = keras.Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
autoencoder.summary()
from keras.datasets import mnist
import numpy as np
(x_train, _), (x_test, _) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))
autoencoder.fit(x_train, x_train,
epochs=50, #5, #50,
batch_size=128,
shuffle=True,
validation_data=(x_test, x_test))
#callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
for a in (autoencoder.weights):
print (a.shape )
decoded_imgs = autoencoder.predict(x_test)
import matplotlib.pyplot as plt
n = 10
plt.figure(figsize=(20, 4))
for i in range(1, n + 1):
# Display original
ax = plt.subplot(2, n, i)
plt.imshow(x_test[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
# Display reconstruction
ax = plt.subplot(2, n, i + n)
plt.imshow(decoded_imgs[i].reshape(28, 28))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
encoder = keras.Model(input_img, encoded)
encoded_imgs = encoder.predict(x_test)
print (encoded_imgs.shape)
n = 10
plt.figure(figsize=(20, 8))
for i in range(1, n + 1):
ax = plt.subplot(1, n, i)
plt.imshow(encoded_imgs[i,:,:,4].reshape((14 , 14)))
#plt.imshow(encoded_imgs[i].reshape((14 * 14 , 16)))
plt.gray()
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
plt.show()