-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest.py
84 lines (70 loc) · 2.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import unittest
import torch
from fpn.factory import make_fpn_resnet, make_fpn_efficientnet
DEVICE = 'cuda:0'
NUM_CLASSES = 2
IMG_SIZE = 224
FPN_CHANNELS = 64
class TestFPN(unittest.TestCase):
def _test_fpn(self,
factory_fn,
fpn_type,
backbones,
in_channels=[3, 1, 8],
pretrained=True,
fpn_channels=FPN_CHANNELS,
num_classes=NUM_CLASSES,
size=(IMG_SIZE, IMG_SIZE)):
for backbone in backbones:
for ch in in_channels:
test_name = f'{fpn_type}, {backbone}, {ch}-channel input'
with self.subTest(msg=test_name):
model = factory_fn(
name=backbone,
fpn_type=fpn_type,
pretrained=pretrained,
num_classes=NUM_CLASSES,
fpn_channels=fpn_channels,
in_channels=ch,
out_size=size).to(DEVICE)
x = torch.empty((1, ch, *size)).to(DEVICE)
out = model(x)
self.assertEqual(out.shape, (1, num_classes, *size))
del model
del x
del out
if DEVICE.startswith('cuda'):
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def test_fpn_resnet(self):
resnets = ['resnet18', 'resnet50', 'resnet101']
self._test_fpn(
factory_fn=make_fpn_resnet, fpn_type='fpn', backbones=resnets)
def test_panoptic_fpn_resnet(self):
resnets = ['resnet18', 'resnet50', 'resnet101']
self._test_fpn(
factory_fn=make_fpn_resnet, fpn_type='panoptic', backbones=resnets)
def test_panet_fpn_resnet(self):
resnets = ['resnet18', 'resnet50', 'resnet101']
self._test_fpn(
factory_fn=make_fpn_resnet, fpn_type='panet', backbones=resnets)
def test_fpn_efficientnet(self):
effnets = [f'efficientnet_b{i}' for i in range(8)]
self._test_fpn(
factory_fn=make_fpn_efficientnet,
fpn_type='fpn',
backbones=effnets)
def test_panoptic_fpn_efficientnet(self):
effnets = [f'efficientnet_b{i}' for i in range(8)]
self._test_fpn(
factory_fn=make_fpn_efficientnet,
fpn_type='panoptic',
backbones=effnets)
def test_panet_fpn_efficientnet(self):
effnets = [f'efficientnet_b{i}' for i in range(8)]
self._test_fpn(
factory_fn=make_fpn_efficientnet,
fpn_type='panet',
backbones=effnets)
if __name__ == '__main__':
unittest.main(failfast=True)