-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinspection.py
131 lines (103 loc) · 4.29 KB
/
inspection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import argparse
from processing.preprocessing import Preprocessor
from processing import utils
from processing import postprocessing
import config
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def inspect_images(model_path):
# load model for inspection
logger.info("loading model for inspection...")
model, info, _ = utils.load_model_HDF5(model_path)
save_dir = os.path.dirname(model_path)
input_dir = info["data"]["input_directory"]
# architecture = info["model"]["architecture"]
# loss = info["model"]["loss"]
rescale = info["preprocessing"]["rescale"]
shape = info["preprocessing"]["shape"]
color_mode = info["preprocessing"]["color_mode"]
vmin = info["preprocessing"]["vmin"]
vmax = info["preprocessing"]["vmax"]
nb_validation_images = info["data"]["nb_validation_images"]
# instantiate preprocessor object to preprocess validation and test inspection images
preprocessor = Preprocessor(
input_directory=input_dir, rescale=rescale, shape=shape, color_mode=color_mode,
)
# -------------- INSPECTING VALIDATION IMAGES --------------
logger.info("generating inspection plots for validation images...")
inspection_val_generator = preprocessor.get_val_generator(
batch_size=nb_validation_images, shuffle=False
)
imgs_val_input = inspection_val_generator.next()[0]
filenames_val = inspection_val_generator.filenames
# get indices of validation inspection images
val_insp_i = [
filenames_val.index(filename) for filename in config.FILENAMES_VAL_INSPECTION
]
imgs_val_input = imgs_val_input[val_insp_i]
# reconstruct validation inspection images (i.e predict)
imgs_val_pred = model.predict(imgs_val_input)
# instantiate ResmapPlotter object to compute resmaps
postproc_val = postprocessing.ResmapPlotter(
imgs_input=imgs_val_input,
imgs_pred=imgs_val_pred,
filenames=config.FILENAMES_VAL_INSPECTION,
color="grayscale",
vmin=vmin,
vmax=vmax,
)
# generate resmaps and save
fig_res_val = postproc_val.generate_inspection_figure()
fig_res_val.savefig(os.path.join(save_dir, "fig_insp_val.svg"))
# -------------- INSPECTING TEST IMAGES --------------
logger.info("generating inspection plots for test images...")
nb_test_images = preprocessor.get_total_number_test_images()
inspection_test_generator = preprocessor.get_test_generator(
batch_size=nb_test_images, shuffle=False
)
# get preprocessed test images
imgs_test_input = inspection_test_generator.next()[0]
filenames_test = inspection_test_generator.filenames
# get indices of test inspection images
test_insp_i = [
filenames_test.index(filename) for filename in config.FILENAMES_TEST_INSPECTION
]
imgs_test_input = imgs_test_input[test_insp_i]
# reconstruct inspection test images (i.e predict)
imgs_test_pred = model.predict(imgs_test_input)
# instantiate ResmapPlotter object to compute resmaps
postproc_test = postprocessing.ResmapPlotter(
imgs_input=imgs_test_input,
imgs_pred=imgs_test_pred,
filenames=config.FILENAMES_TEST_INSPECTION,
color="grayscale",
vmin=vmin,
vmax=vmax,
)
# generate resmaps and save
fig_res_test = postproc_test.generate_inspection_figure()
fig_res_test.savefig(os.path.join(save_dir, "fig_insp_test.svg"))
# --------------------------------------------------
# fig_score_insp = postproc_test.generate_score_scatter_plot(
# inspection_test_generator, model_path, filenames_test_insp
# )
# fig_score_insp.savefig(os.path.join(save_dir, "fig_score_insp.svg"))
# fig_score_test = postproc_test.generate_score_scatter_plot(
# inspection_test_generator, model_path
# )
# fig_score_test.savefig(os.path.join(save_dir, "fig_score_test.svg"))
return
if __name__ == "__main__":
# create parser
parser = argparse.ArgumentParser(
description="Test model on some images for inspection.",
)
parser.add_argument(
"-p", "--path", type=str, required=True, metavar="", help="path to saved model"
)
# parse arguments
args = parser.parse_args()
# run main function
inspect_images(model_path=args.path)