-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
68 lines (49 loc) · 1.58 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#uses SUMOHelper.py and DQlearner.pydoc
# http://www.sumo.dlr.de/daily/pydoc/traci.html
from SUMOHelper import SUMOHelper
from DQLearner import DQLearner
import time
import pandas as pd
agent = DQLearner()
sm = SUMOHelper("/usr/bin/sumo-gui","data/config.sumocfg")
data = []
episodes = 25
batch_size = 64
trained = True
if trained:
file_name = 'trained_data_128.csv'
agent.load('models/trained_model.h5')
print("Trained model loaded")
else:
file_name = 'untrained_data_128.csv'
print('No trained models found! Running without trained models.')
for e in range(episodes):
print("EPISODE ",e)
sm.start()
step = 0
waiting_time = 0
action = 0
tls = sm.getTrafficLights()
simulation = sm.getSimulation()
tls.setPhase("0",0)
tls.setPhaseDuration("0",200)
print("step", step)
while simulation.getMinExpectedNumber()>0 and step < 1000:#no of vehicles in simulation env
sm.step()
state = sm.getState()
action = agent.act(state)
step,new_state,reward,waiting_time = sm.simulate(waiting_time,action,state[2],tls,step)
agent.push(state, action, reward, new_state, False)
if(len(agent.memory) > batch_size):
agent.fit(batch_size)
# print("waiting_time: ",waiting_time)
mem = agent.memory[-1]
del agent.memory[-1]
agent.memory.append((mem[0], mem[1], reward, mem[3], True))
print('episode - ' + str(e) + ' total waiting time - ' + str(waiting_time))
data.append((e,waiting_time,reward))
# agent.save("trained_model{0}.h5".format(str(time.time())))
df = pd.DataFrame(data,columns=['episode', 'waiting_time', 'reward'])
# df.to_csv(file_name,index=False)
sm.close()
print(data)