Skip to content

Latest commit

 

History

History
148 lines (100 loc) · 4.13 KB

README.md

File metadata and controls

148 lines (100 loc) · 4.13 KB

logo

Introduction

This if the official code of "SGCCNet: Single-Stage 3D Object Detector With Saliency-Guided Data Augmentation and Confidence Correction Mechanism"

The single-stage point-based 3D object detectors face challenges such as inadequate learning of low-quality objects (ILQ) and misalignment between localization accuracy and classification confidence (MLC).

In this paper, we propose SGCCNet to alleviate these two issues. For ILQ, SGCCNet adopts a Saliency-Guided Data Augmentation (SGDA) strategy to enhance the robustness of the model on low-quality objects by reducing its reliance on salient features. For MLC, we design a Confidence Correction Mechanism (CCM) specifically for point-based multi-class detectors. This mechanism corrects the confidence of the current proposal by utilizing the predictions of other vote points within the local region in the post-processing stage.

logo

News and Updates

[2024-10-28] SGDA (SGCCNet) is released.

Installation

This project has provided an environment setting file of conda, users can easily reproduce the environment by the following commands:

git clone https://github.com/AlanLiangC/SGCCNet
cd SGCCNet/models/pointnet2_ops_lib
python setup.py develop

Getting Started

Training classification model

  • Data preparation

We have prepared the KITTI and Waymo datasets according to the latest version of the mmdetection3D project. The core of classification training is to obtain the gt_sample folder containing the target instances and the corresponding .pkl files.

  • KITTI
kitti
├── ImageSets
│   ├── test.txt
│   ├── train.txt
│   ├── trainval.txt
│   ├── val.txt
├── testing
│   ├── calib
│   ├── image_2
│   ├── velodyne
│   ├── velodyne_reduced
├── training
│   ├── calib
│   ├── image_2
│   ├── label_2
│   ├── velodyne
│   ├── velodyne_reduced
│   ├── planes (optional)
├── kitti_gt_database
│   ├── xxxxx.bin
├── kitti_infos_train.pkl
├── kitti_infos_val.pkl
├── kitti_dbinfos_train.pkl
├── kitti_infos_test.pkl
├── kitti_infos_trainval.pkl
  • Waymo
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── waymo
│   │   ├── waymo_format
│   │   │   ├── training
│   │   │   ├── validation
│   │   │   ├── testing
│   │   │   ├── gt.bin
│   │   │   ├── cam_gt.bin
│   │   │   ├── fov_gt.bin
│   │   ├── kitti_format
│   │   │   ├── ImageSets
│   │   │   ├── training
│   │   │   │   ├── image_0
│   │   │   │   ├── image_1
│   │   │   │   ├── image_2
│   │   │   │   ├── image_3
│   │   │   │   ├── image_4
│   │   │   │   ├── velodyne
│   │   │   ├── testing
│   │   │   │   ├── (the same as training)
│   │   │   ├── waymo_gt_database
│   │   │   ├── waymo_infos_trainval.pkl
│   │   │   ├── waymo_infos_train.pkl
│   │   │   ├── waymo_infos_val.pkl
│   │   │   ├── waymo_infos_test.pkl
│   │   │   ├── waymo_dbinfos_train.pkl

The workflow of SGDA is :

logo

  • train classification task

python main.py

  • Generate GT sampling pool

python generate_data_pkl.py

Replace the generated .pkl with the original .pkl generated by OpenPCD to facilitate the GT sample process during training.

Visualization

We have designed a user interface (UI) to display the results generated by SGDA inference.

Use

  • open main window

python SaliencyViewer.py

logo

  • Inference

Click Button: Inference

logo