forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBatchedNmsPlugin.h
199 lines (159 loc) · 5.82 KB
/
BatchedNmsPlugin.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#pragma once
#include <NvInfer.h>
#include <vector>
#include <cassert>
using namespace nvinfer1;
#define PLUGIN_NAME "BatchedNms"
#define PLUGIN_VERSION "1"
#define PLUGIN_NAMESPACE ""
namespace nvinfer1 {
int batchedNms(int batchSize,
const void *const *inputs, void **outputs,
size_t count, int detections_per_im, float nms_thresh,
void *workspace, size_t workspace_size, cudaStream_t stream);
/*
input1: scores{C, 1} C->topk
input2: boxes{C, 4} C->topk format:XYXY
input3: classes{C, 1} C->topk
output1: scores{C, 1} C->detections_per_img
output2: boxes{C, 4} C->detections_per_img format:XYXY
output3: classes{C, 1} C->detections_per_img
Description: implement batched nms
*/
class BatchedNmsPlugin : public IPluginV2Ext {
float _nms_thresh;
int _detections_per_im;
size_t _count;
protected:
void deserialize(void const* data, size_t length) {
const char* d = static_cast<const char*>(data);
read(d, _nms_thresh);
read(d, _detections_per_im);
read(d, _count);
}
size_t getSerializationSize() const override {
return sizeof(_nms_thresh) + sizeof(_detections_per_im)
+ sizeof(_count);
}
void serialize(void *buffer) const override {
char* d = static_cast<char*>(buffer);
write(d, _nms_thresh);
write(d, _detections_per_im);
write(d, _count);
}
public:
BatchedNmsPlugin(float nms_thresh, int detections_per_im)
: _nms_thresh(nms_thresh), _detections_per_im(detections_per_im) {
assert(nms_thresh > 0);
assert(detections_per_im > 0);
}
BatchedNmsPlugin(float nms_thresh, int detections_per_im, size_t count)
: _nms_thresh(nms_thresh), _detections_per_im(detections_per_im), _count(count) {
assert(nms_thresh > 0);
assert(detections_per_im > 0);
assert(count > 0);
}
BatchedNmsPlugin(void const* data, size_t length) {
this->deserialize(data, length);
}
const char *getPluginType() const override {
return PLUGIN_NAME;
}
const char *getPluginVersion() const override {
return PLUGIN_VERSION;
}
int getNbOutputs() const override {
return 3;
}
Dims getOutputDimensions(int index,
const Dims *inputs, int nbInputDims) override {
assert(nbInputDims == 3);
assert(index < this->getNbOutputs());
return Dims2(_detections_per_im, index == 1 ? 4 : 1);
}
bool supportsFormat(DataType type, PluginFormat format) const override {
return type == DataType::kFLOAT && format == PluginFormat::kLINEAR;
}
int initialize() override { return 0; }
void terminate() override {}
size_t getWorkspaceSize(int maxBatchSize) const override {
static int size = -1;
if (size < 0) {
size = batchedNms(maxBatchSize, nullptr, nullptr, _count,
_detections_per_im, _nms_thresh,
nullptr, 0, nullptr);
}
return size;
}
int enqueue(int batchSize,
const void *const *inputs, void **outputs,
void *workspace, cudaStream_t stream) override {
return batchedNms(batchSize, inputs, outputs, _count,
_detections_per_im, _nms_thresh,
workspace, getWorkspaceSize(batchSize), stream);
}
void destroy() override {
delete this;
}
const char *getPluginNamespace() const override {
return PLUGIN_NAMESPACE;
}
void setPluginNamespace(const char *N) override {
}
// IPluginV2Ext Methods
DataType getOutputDataType(int index, const DataType* inputTypes, int nbInputs) const {
assert(index < 3);
return DataType::kFLOAT;
}
bool isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted,
int nbInputs) const {
return false;
}
bool canBroadcastInputAcrossBatch(int inputIndex) const { return false; }
void configurePlugin(const Dims* inputDims, int nbInputs, const Dims* outputDims, int nbOutputs,
const DataType* inputTypes, const DataType* outputTypes, const bool* inputIsBroadcast,
const bool* outputIsBroadcast, PluginFormat floatFormat, int maxBatchSize) {
assert(*inputTypes == nvinfer1::DataType::kFLOAT &&
floatFormat == nvinfer1::PluginFormat::kLINEAR);
assert(nbInputs == 3);
assert(inputDims[0].d[0] == inputDims[2].d[0]);
assert(inputDims[1].d[0] == inputDims[2].d[0]);
_count = inputDims[0].d[0];
}
IPluginV2Ext *clone() const override {
return new BatchedNmsPlugin(_nms_thresh, _detections_per_im, _count);
}
private:
template<typename T> void write(char*& buffer, const T& val) const {
*reinterpret_cast<T*>(buffer) = val;
buffer += sizeof(T);
}
template<typename T> void read(const char*& buffer, T& val) {
val = *reinterpret_cast<const T*>(buffer);
buffer += sizeof(T);
}
};
class BatchedNmsPluginCreator : public IPluginCreator {
public:
BatchedNmsPluginCreator() {}
const char *getPluginNamespace() const override {
return PLUGIN_NAMESPACE;
}
const char *getPluginName() const override {
return PLUGIN_NAME;
}
const char *getPluginVersion() const override {
return PLUGIN_VERSION;
}
IPluginV2 *deserializePlugin(const char *name, const void *serialData, size_t serialLength) override {
return new BatchedNmsPlugin(serialData, serialLength);
}
void setPluginNamespace(const char *N) override {}
const PluginFieldCollection *getFieldNames() override { return nullptr; }
IPluginV2 *createPlugin(const char *name, const PluginFieldCollection *fc) override { return nullptr; }
};
REGISTER_TENSORRT_PLUGIN(BatchedNmsPluginCreator);
} // namespace nvinfer1
#undef PLUGIN_NAME
#undef PLUGIN_VERSION
#undef PLUGIN_NAMESPACE