-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSIN_test.py
266 lines (210 loc) · 10.5 KB
/
SIN_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import argparse
import os
import random
from shutil import copyfile
import cv2
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from SIN_src.dataset import *
from SIN_src.models.SIN_network import *
from SIN_src.config import Config
from SIN_src.utils import *
def get_files_from_path(path):
# read a folder, return the complete path
ret = []
for root, dirs, files in os.walk(path):
for filespath in files:
ret.append(os.path.join(root, filespath))
return ret
# function to return a path list from a txt file
def get_files_from_txt(path):
file_list = []
f = open(path)
for line in f.readlines():
line = line.strip("\n")
file_list.append(line)
sys.stdout.flush()
f.close()
return file_list
def visualize(data, keys, path):
filename = data['filename']
# create sample path if not exists
if not os.path.exists(path):
os.makedirs(path)
data_list = []
for key in keys:
item = data[key]
# [B, C=1, H, W] -> [H, W, C=1]
if item.size(0) == 1:
item = torch.cat([item, item, item], dim=0)
item = item[0, :, :, :,].permute(1, 2, 0)
item = (item * 255.).cpu().detach().numpy().astype(np.uint8)
data_list.append(item)
# concate on `width` dimension
sample = np.concatenate(data_list, axis=1)
cv2.imwrite(path + f"/{filename}", sample)
def main_worker(gpu, args):
# create dirs
if not os.path.exists(args.output):
os.makedirs(args.output)
if not os.path.exists(os.path.join(args.output, 'samples')):
os.makedirs(os.path.join(args.output, 'samples'))
if not os.path.exists(os.path.join(args.output, 'inpainted_with_sketch')):
os.makedirs(os.path.join(args.output, 'inpainted_with_sketch'))
if not os.path.exists(os.path.join(args.output, 'inpainted_with_refined_sketch')):
os.makedirs(os.path.join(args.output, 'inpainted_with_refined_sketch'))
rank = args.node_rank * args.gpus + gpu
torch.cuda.set_device(gpu)
device = gpu
# load config file
config = Config(args.config_path)
config.MODE = 1
config.nodes = args.nodes
config.gpus = args.gpus
config.GPU_ids = args.GPU_ids
config.DDP = args.DDP
if config.DDP:
config.world_size = args.world_size
else:
config.world_size = 1
torch.backends.cudnn.benchmark = True # cudnn auto-tuner
cv2.setNumThreads(0)
# initialize random seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
deform_func = RandomDeformSketch(input_size=args.size)
# initialize models
model = TextureRestorationModule()
model = model.to(device)
model.eval()
model.load_state_dict(torch.load(args.checkpoint)['generator'])
print('Model loaded.')
model.eval()
str_encoder = PartialSketchEncoder()
str_encoder = str_encoder.to(device)
str_encoder.eval()
str_encoder.load_state_dict(torch.load(args.checkpoint)['str_encoder'])
print('Structure encoder loaded.')
str_encoder.eval()
# initialize data
image_flist = sorted(get_files_from_path(args.images))
mask_flist = sorted(get_files_from_path(args.masks))
print("\n\nStart evaluating...\n\n")
with torch.no_grad():
for i in range(len(image_flist)):
if i >= args.num_samples:
print('\n\nTesting done...\n\n')
sys.exit(0)
image = cv2.imread(image_flist[i])
filename = os.path.basename(image_flist[i]).split('.')[0]
mask = cv2.imread(os.path.join(args.masks, filename + '.png'))
edge = cv2.imread(os.path.join(args.edges, filename + '.png'))
sketch = cv2.imread(os.path.join(args.sketches, filename + '.png'))
# read refined sketch directly from local path
refined_sketch = cv2.imread(os.path.join(args.refined_sketches, filename + '.png'))
refined_sketch = cv2.resize(refined_sketch, [args.size, args.size])
refined_sketch = refined_sketch / 255.
_, refined_sketch = cv2.threshold(refined_sketch, thresh=random.uniform(0.65, 0.75), maxval=1.0, type=cv2.THRESH_BINARY)
refined_sketch = torch.from_numpy(refined_sketch.astype(np.float32)).permute(2, 0, 1).unsqueeze(0).contiguous()
refined_sketch = refined_sketch.to(device)
# resize
image = cv2.resize(image, [args.size, args.size])
mask = cv2.resize(mask, [args.size, args.size])
edge = cv2.resize(edge, [args.size, args.size])
sketch = cv2.resize(sketch, [args.size, args.size])
# normalize to [0, 1]
image = image / 255.
mask = mask / 255.
edge = edge / 255.
sketch = sketch / 255.
# binarize
thresh = random.uniform(0.65, 0.75)
_, mask = cv2.threshold(mask, thresh=0.5, maxval=1.0, type=cv2.THRESH_BINARY)
_, edge = cv2.threshold(edge, thresh=thresh, maxval=1.0, type=cv2.THRESH_BINARY)
_, sketch = cv2.threshold(sketch, thresh=thresh, maxval=1.0, type=cv2.THRESH_BINARY)
# to tensor
image = torch.from_numpy(image.astype(np.float32)).permute(2, 0, 1).unsqueeze(0).contiguous()
mask = torch.from_numpy(mask.astype(np.float32)).permute(2, 0, 1).unsqueeze(0).contiguous()
edge = torch.from_numpy(edge.astype(np.float32)).permute(2, 0, 1).unsqueeze(0).contiguous()
sketch = torch.from_numpy(sketch.astype(np.float32)).permute(2, 0, 1).unsqueeze(0).contiguous()
# deform sketch
deformed_sketch = sketch.detach() # [B=1, C=3, H, W]
# single channel version of elements
sc_edge = torch.sum(edge / 3, dim=1, keepdim=True)
sc_sketch = torch.sum(sketch / 3, dim=1, keepdim=True)
sc_mask = torch.sum(mask / 3, dim=1, keepdim=True)
# to cuda
image = image.to(device)
mask = mask.to(device)
edge = edge.to(device)
sc_sketch = sc_sketch.to(device)
sc_edge = sc_edge.to(device)
sc_mask = sc_mask.to(device)
deformed_sketch = deformed_sketch.to(device)
# forward
refined_sketch_feature = str_encoder(refined_sketch)
deformed_sketch_feature = str_encoder(deformed_sketch)
# forward with refined sketch
masked_image = image * (1 - mask)
out_with_refined_sketch = model(torch.cat([masked_image, sc_mask], dim=1), refined_sketch_feature)
inpainted_with_refined_sketch = mask * out_with_refined_sketch + (1 - mask) * image
# forward with deformed sketch
out_with_deformed_sketch = model(torch.cat([masked_image, sc_mask], dim=1), deformed_sketch_feature)
inpainted_with_deformed_sketch = mask * out_with_deformed_sketch + (1 - mask) * image
# save sample of sketch
inpainted_with_deformed_sketch *= 255.0
inpainted_with_deformed_sketch = inpainted_with_deformed_sketch.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)
cv2.imwrite(args.output + '/' + 'inpainted_with_sketch' + '/' + filename + '.png', inpainted_with_deformed_sketch[0, :, :, :,])
# save sample of refined sketch
inpainted_with_refined_sketch *= 255.0
inpainted_with_refined_sketch = inpainted_with_refined_sketch.permute(0, 2, 3, 1).cpu().detach().numpy().astype(np.uint8)
cv2.imwrite(args.output + '/' + 'inpainted_with_refined_sketch' + '/' + filename + '.png', inpainted_with_refined_sketch[0, :, :, :,])
# make data dict
data = {
'filename': filename + '.png',
'image': image,
'masked_image': masked_image + deformed_sketch * mask,
'deformed_sketch': deformed_sketch * mask + (1 - mask) * edge,
'refined_sketch': refined_sketch,
'edge': edge,
'inpainted_with_deformed_sketch': mask * out_with_deformed_sketch + (1 - mask) * image,
'inpainted_with_refined_sketch': mask * out_with_refined_sketch + (1 - mask) * image,
}
visualize(data, ['image', 'masked_image', 'deformed_sketch', 'refined_sketch', 'inpainted_with_deformed_sketch', 'inpainted_with_refined_sketch'], os.path.join(args.output, 'samples'))
print(f"Progress: {i + 1}/{len(image_flist)}")
cleanup()
def cleanup():
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config_path', type=str, default='', help='path of configuration path')
parser.add_argument('--nodes', type=int, default=1, help='how many machines')
parser.add_argument('--gpus', type=int, default=1, help='how many GPUs in one node')
parser.add_argument('--GPU_ids', type=str, default='0')
parser.add_argument('--node_rank', type=int, default=0, help='the id of this machine')
parser.add_argument('--DDP', action='store_true', help='DDP')
parser.add_argument('--images', type=str, default='', help='path of images for testing')
parser.add_argument('--masks', type=str, default='', help='path of masks for testing')
parser.add_argument('--edges', type=str, default='', help='path of edges for testing')
parser.add_argument('--sketches', type=str, default='', help='path of sketches for testing')
parser.add_argument('--refined_sketches', type=str, default='', help='path of refined sketches from SRN for testing')
parser.add_argument('--output', type=str, default='', help='path of output')
parser.add_argument('--checkpoint', type=str, default='', help='pretrained checkpoint path')
parser.add_argument('--size', type=int, default=256, help='image resolution for testing')
parser.add_argument('--num_samples', type=int, help='number of samples for testing')
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
config_path = args.config_path
args.config_path = config_path
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU_ids
if args.DDP:
args.world_size = args.nodes * args.gpus
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '22323'
else:
args.world_size = 1
mp.spawn(main_worker, nprocs=args.world_size, args=(args,))