-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgame_agent.py
490 lines (376 loc) · 18.5 KB
/
game_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
"""Finish all TODO items in this file to complete the isolation project, then
test your agent's strength against a set of known agents using tournament.py
and include the results in your report.
"""
import random
from operator import itemgetter
class SearchTimeout(Exception):
"""Subclass base exception for code clarity. """
pass
def custom_score(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
This should be the best heuristic function for your project submission.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
my_moves = len(game.get_legal_moves(player))
opponent_moves = len(game.get_legal_moves(game.get_opponent(player)))
blank_spaces = len(game.get_blank_spaces())
max_blanks = game.height * game.width
for move in game.get_legal_moves(player):
my_moves += len(game.forecast_move(move).get_legal_moves(player))
for move in game.get_legal_moves(game.get_opponent(player)):
my_moves += len(game.forecast_move(move).get_legal_moves(game.get_opponent(player)))
return float(my_moves - ((1 + (blank_spaces/max_blanks)) * opponent_moves))
def custom_score_2(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
w, h = game.width / 2., game.height / 2.
y, x = game.get_player_location(player)
my_moves = len(game.get_legal_moves(player))
opponent_moves = len(game.get_legal_moves(game.get_opponent(player)))
return float(my_moves - (2 * opponent_moves * float((h - y)**2 + (w - x)**2)))
def custom_score_3(game, player):
"""Calculate the heuristic value of a game state from the point of view
of the given player.
Note: this function should be called from within a Player instance as
`self.score()` -- you should not need to call this function directly.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : object
A player instance in the current game (i.e., an object corresponding to
one of the player objects `game.__player_1__` or `game.__player_2__`.)
Returns
-------
float
The heuristic value of the current game state to the specified player.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
w, h = game.width / 2., game.height / 2.
y, x = game.get_player_location(player)
my_moves = game.get_legal_moves(player)
opponent_moves = game.get_legal_moves(game.get_opponent(player))
# Sum the available moves for each legal move.
my_sum_moves = float(sum([len(game.forecast_move(move).get_legal_moves(player)) for move in my_moves]))
opponent_sum_moves = float(sum([len(game.forecast_move(move).get_legal_moves(game.get_opponent(player))) for move in opponent_moves]))
return float(len(my_moves) * my_sum_moves - opponent_sum_moves * len(opponent_moves)* float((h - y) ** 2 + (w - x) ** 2))
class IsolationPlayer:
"""Base class for minimax and alphabeta agents -- this class is never
constructed or tested directly.
******************** DO NOT MODIFY THIS CLASS ********************
Parameters
----------
search_depth : int (optional)
A strictly positive integer (i.e., 1, 2, 3,...) for the number of
layers in the game tree to explore for fixed-depth search. (i.e., a
depth of one (1) would only explore the immediate sucessors of the
current state.)
score_fn : callable (optional)
A function to use for heuristic evaluation of game states.
timeout : float (optional)
Time remaining (in milliseconds) when search is aborted. Should be a
positive value large enough to allow the function to return before the
timer expires.
"""
# mark
def __init__(self, search_depth=3, score_fn=custom_score, timeout=10.):
self.search_depth = search_depth
self.score = score_fn
self.time_left = None
self.TIMER_THRESHOLD = timeout
class MinimaxPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using depth-limited minimax
search. You must finish and test this player to make sure it properly uses
minimax to return a good move before the search time limit expires.
"""
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
************** YOU DO NOT NEED TO MODIFY THIS FUNCTION *************
For fixed-depth search, this function simply wraps the call to the
minimax method, but this method provides a common interface for all
Isolation agents, and you will replace it in the AlphaBetaPlayer with
iterative deepening search.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Initialize the best move so that this function returns something
# in case the search fails due to timeout
best_move = (-1, -1)
try:
# The try/except block will automatically catch the exception
# raised when the timer is about to expire.
return self.minimax(game, self.search_depth)
except SearchTimeout:
pass # Handle any actions required after timeout as needed
# Return the best move from the last completed search iteration
return best_move
def minimax(self, game, depth):
"""Implement depth-limited minimax search algorithm as described in
the lectures.
This should be a modified version of MINIMAX-DECISION in the AIMA text.
https://github.com/aimacode/aima-pseudocode/blob/master/md/Minimax-Decision.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
best_score, best_move = self.max_value(game, depth)
#print("d={} s={}".format(depth, score), m)
return best_move
def max_value(self, game, depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if depth == 0:
# The current dept 0 so we need to get his score by
# Calculating his heuristic value using the self.score() function
return self.score(game, self), (-1,-1)
legal_moves = game.get_legal_moves()
if len(legal_moves) == 0:
return game.utility(self), (-1,-1)
best_move = (-1, -1)
best_score = float("-inf")
for m in legal_moves:
# The forecast_move is the opponent move so it will be min_value
score, _ = self.min_value(game.forecast_move(m), depth - 1)
# Update the current max score inside the iteration as needed using the DFS algorithm
best_score, best_move = max((best_score, best_move), (score, m))
# During the recursion we just need the best score, we don't mind why we got it
# so we don't really need to pass the best move, but we do it for the benefit of first level
# which then we needed the best move to return
return best_score, best_move
def min_value(self, game, depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if depth == 0:
# The current dept 0 so we need to get his score by
# Calculating his heuristic value using the self.score() function
return self.score(game, self), (-1,-1)
legal_moves = game.get_legal_moves(game.get_opponent(self))
if len(legal_moves) == 0:
return game.utility(self), (-1,-1)
best_move = (-1, -1)
best_score = float("inf")
for m in legal_moves:
# The forecast_move is the my move so it will be max_value
score, _ = self.max_value(game.forecast_move(m), depth - 1)
# Update the current best score inside the iteration as needed using the DFS algorithm
best_score, best_move = min((best_score, best_move), (score, m))
# During the recursion we just need the best score, we don't mind why we got it
# so we don't really need to pass the best move, but we do it for the benefit of first level
# which then we needed the best move to return
return best_score, best_move
class AlphaBetaPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using iterative deepening minimax
search with alpha-beta pruning. You must finish and test this player to
make sure it returns a good move before the search time limit expires.
"""
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
Modify the get_move() method from the MinimaxPlayer class to implement
iterative deepening search instead of fixed-depth search.
**********************************************************************
NOTE: If time_left() < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
score = float("-inf")
current_best_move = (-1,-1)
self.search_depth = 1
try:
# Iterative deepening search until reach search timeout
while True:
# Using alphabeta in order to find the best move
current_best_move = self.alphabeta(game, self.search_depth)
# Try to find a better move by deepening the search_depth
self.search_depth += 1
except SearchTimeout:
return current_best_move
return current_best_move
def alphabeta(self, game, depth, alpha=float("-inf"), beta=float("inf")):
"""Implement depth-limited minimax search with alpha-beta pruning as
described in the lectures.
This should be a modified version of ALPHA-BETA-SEARCH in the AIMA text
https://github.com/aimacode/aima-pseudocode/blob/master/md/Alpha-Beta-Search.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
best_score, best_move = self.max_value(game, depth, alpha, beta)
return best_move
def max_value(self, game, depth, alpha, beta):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if depth == 0:
# The current dept 0 so we need to get his score by
# Calculating his heuristic value using the self.score() function
return self.score(game, self), (-1,-1)
legal_moves = game.get_legal_moves()
if len(legal_moves) == 0:
return game.utility(self), (-1,-1)
best_move = (-1, -1)
best_score = float("-inf")
for m in legal_moves:
# The forecast_move is the opponent move so it will be min_value
score, _ = self.min_value(game.forecast_move(m), depth - 1, alpha, beta)
# Update the current max score inside the iteration as needed using the DFS algorithm
best_score, best_move = max((best_score, best_move), (score, m))
if best_score >= beta:
# we found score >= beta in max level so we will not be able to find less then this score
# for the upper min level because we will return the max value
# so we can finish our search on this branch and return the current best score
return best_score, best_move
alpha = max(alpha, best_score)
# During the recursion we just need the best score, we don't mind why we got it
# so we don't really need to pass the best move, but we do it for the benefit of first level
# which then we needed the best move to return
return best_score, best_move
def min_value(self, game, depth, alpha, beta):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if depth == 0:
# The current dept 0 so we need to get his score by
# Calculating his heuristic value using the self.score() function
return self.score(game, self), (-1,-1)
legal_moves = game.get_legal_moves(game.get_opponent(self))
if len(legal_moves) == 0:
return game.utility(self), (-1,-1)
best_move = (-1, -1)
best_score = float("inf")
for m in legal_moves:
# The forecast_move is the my move so it will be max_value
score, _ = self.max_value(game.forecast_move(m), depth - 1, alpha, beta)
# Update the current best score inside the iteration as needed using the DFS algorithm
best_score, best_move = min((best_score, best_move), (score, m))
if best_score <= alpha:
return best_score, best_move
beta = min(beta, best_score)
# During the recursion we just need the best score, we don't mind why we got it
# so we don't really need to pass the best move, but we do it for the benefit of first level
# which then we needed the best move to return
return best_score, best_move