Skip to content

waifu2x

WolframRhodium edited this page Jan 21, 2022 · 38 revisions

Waifu2x is a well-known image super-resolution neural network for anime-style arts.

Link:

Models

Includes all known publicly available waifu2x models:

  • anime_style_art: requires pre-scaled input for the scaled2.0x variant
    • noise1 noise2 noise3 scale2.0x
  • anime_style_art_rgb: requires pre-scaled input for the scale2.0x variant
    • noise0 noise1 noise2 noise3 scale2.0x
  • photo: requires pre-scaled input for the scale2.0x variant
    • noise0 noise1 noise2 noise3 scale2.0x
  • ukbench: requires pre-scaled input
    • scale2.0x
  • upconv_7_anime_style_art_rgb
    • scale2.0x noise3_scale2.0x noise2_scale2.0x noise1_scale2.0x noise0_scale2.0x
  • upconv_7_photo
    • scale2.0x noise0_scale2.0x noise1_scale2.0x noise2_scale2.0x noise3_scale2.0x
  • cunet: tile size (block_w and block_h) must be multiples of 4.
    • noise0 noise1 noise2 noise3
    • scale2.0x
    • noise0_scale2.0x noise1_scale2.0x noise2_scale2.0x noise3_scale2.0x
  • upresnet10
    • scale2.0x
    • noise0_scale2.0x noise1_scale2.0x noise2_scale2.0x noise3_scale2.0x

vsmlrt.py wrapper Usage

In order to simplify usage, we provided a Python wrapper module vsmlrt that provides full functionality of waifu2x caffe but with a more Pythonic interface:

from vsmlrt import Waifu2x, Waifu2xModel, Backend

src = core.std.BlankClip(format=vs.RGBS)

# backend could be:
#  - CPU Backend.OV_CPU(): the recommended CPU backend; generally faster than ORT-CPU.
#  - CPU Backend.ORT_CPU(num_streams=1, verbosity=2): vs-ort cpu backend.
#  - GPU Backend.ORT_CUDA(device_id=0, cudnn_benchmark=True, num_streams=1, verbosity=2)
#     - use device_id to select device
#     - set cudnn_benchmark=False to reduce script reload latency when debugging, but with slight throughput performance penalty.
flt = Waifu2x(src, noise=-1, scale=2, model=Waifu2xModel.upconv_7_anime_style_art_rgb, backend=Backend.ORT_CUDA())

Raw Model Usage

This section is mostly for reference purposes as the suggested way is to use the vsmlrt.py.

src = core.std.BlankClip(width=1920, height=1080, format=vs.RGBS)
flt = core.ov.Model(src, "upconv_7_anime_style_art_rgb_scale2.0x.onnx")

anime_style_art, anime_style_art_rgb, photo, ukbench models do not include builtin upscaling. Therefore, you need to upscale 2x using Catmull-Rom (bicubic(b=0, c=0.5)) before feeding the image to the models:

src = core.std.BlankClip(width=1920, height=1080, format=vs.RGBS)
flt = core.ov.Model(src.fmtc.resample(scale=2, kernel="bicubic", a1=0, a2=0.5), "anime_style_art_rgb_scale2.0x.onnx")

Notes

  • cunet networks work best when the tile size (block_w/block_h) is in range 60 - 150 and multiples of 4.

Benchmarking

Measurements: FPS / Device Memory (GB)

Device memory:

  • CPU: private memory including VapourSynth
  • GPU: device memory including context

Tesla V100

Software: VapourSynth R57, Windows Server 2019, Graphics Driver 511.23

Input size: 1920x1080

Backends

  1. vs-mlrt v6
  2. VapourSynth-Waifu2x-caffe r14

Performance

FP32

Model [1] ort-cuda [1] trt [1] trt (2 streams) [2] caffe (540p patch)
upconv7 5.98 / 5065 6.60 / 5033 8.43 / 9253 1.63 / 3248
upresnet10 4.36 / 5061 N/A N/A 1.54 / 7232
cunet 2.58 / 9155 N/A N/A 1.11 / 11657

FP16

Model [1] ort-cuda [1] trt [1] trt (2 streams)
upconv7 10.4 / 5189 13.8 / 3041 26.2 / 5253
upresnet10 6.43 / 5059 N/A N/A
cunet 4.10 / 9535 N/A N/A

Tesla A10

Software: VapourSynth R57, Windows Server 2019, Graphics Driver 511.23, lock the GPU clocks at max frequency.

Input size: 1920x1080

Backends

  1. vs-mlrt v6

Performance

FP32

Model [1] ort-cuda [1] trt [1] trt (2 streams)
upconv7 6.94 / 9765 7.83 / 5511 8.61 / 9731
upresnet10 3.90 / 5665 N/A N/A
cunet 2.20 / 18469 N/A N/A

FP16

Model [1] ort-cuda [1] trt [1] trt (2 streams)
upconv7 9.66 / 6049 16.1 / 3501 19.9 / 5701
upresnet10 6.53 / 5663 N/A N/A
cunet 3.26 / 10017 N/A N/A

Icelake Server

Hardware: Xeon Icelake Server 32C64T @2.90 GHz

Software: VapourSynth R57, Windows Server 2019

Input size: 1920x1080

Backends

  1. vs-mlrt v6
  2. VapourSynth-Waifu2x-w2xc r8

Performance

FP32

Model [1] ov-cpu [2] w2xc
upconv7 1.14 / 15547 N/A
upresnet10 1.27 / 7245 N/A
cunet 0.57 / 10943 N/A
anime rgb 0.62 / 15578 0.048 / 1145

EPYC Milan

Hardware: EPYC Milan 16C32T @2.55 GHz

Software: VapourSynth R57, Windows Server 2019

Input size: 1920x1080

Backends

  1. vs-mlrt v6
  2. VapourSynth-Waifu2x-w2xc r8

Performance

FP32

Model [1] ov-cpu [2] w2xc
upconv7 0.37 / 8612 N/A
upresnet10 0.44 / 7143 N/A
cunet 0.23 / 10943 N/A
anime rgb 0.21 / 15439 0.039 / 1183