-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path8.2.py
233 lines (190 loc) · 8.22 KB
/
8.2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import cv2
import numpy as np
import controller
# Open a connection to the front camera (usually camera 0, but it might be different on your system)
cap = cv2.VideoCapture(0)
SCREEN_WIDTH = 0
SCREEN_HEIGHT = 0
# Check if the camera opened successfully
if not cap.isOpened():
print("Error: Could not open camera.")
exit()
# Store the history of spot positions
positions = {'red': [], 'blue': [], 'green': []}
# Variable to cache the center point
cached_center = None
# Define areas as bottom-left and top-right corners
areas = {
'steering': [(100, 350), (380, 470)],
'gas': [(520, 0), (650, 500)],
#'brake': [(500, 300), (650, 450)]
}
MIN_GAS = None
MAX_GAS = None
def calculate_center_of_rotation(positions):
if len(positions) < 2:
return None
positions = np.array(positions)
x = positions[:, 0]
y = positions[:, 1]
A = np.c_[x, y, np.ones(positions.shape[0])]
b = x ** 2 + y ** 2
coeff, _, _, _ = np.linalg.lstsq(A, b, rcond=None)
cx, cy = coeff[0] / 2, coeff[1] / 2
return int(cx), int(cy)
def calculate_absolute_rotation_angle(center, point):
dx = point[0] - center[0]
dy = point[1] - center[1]
angle = np.arctan2(dy, dx)
return np.degrees(angle)
def draw_rotated_circle(frame, angle):
h, w = frame.shape[:2]
radius = min(h, w) // 4
center = (w // 2, h // 2)
# Create a blank image with a circle
circle_img = np.zeros_like(frame)
cv2.circle(circle_img, center, radius, (255, 255, 255), 2)
# Calculate the end point of the line based on the angle
end_point = (int(center[0] + radius * np.cos(np.radians(angle))),
int(center[1] + radius * np.sin(np.radians(angle))))
# Draw the radius line
cv2.line(circle_img, center, end_point, (0, 255, 0), 2)
return circle_img
def detect_color_spots(hsv, lower_bound, upper_bound, area):
mask = cv2.inRange(hsv, lower_bound, upper_bound)
mask = mask[area[0][1]:area[1][1], area[0][0]:area[1][0]]
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if contours:
largest_contour = max(contours, key=cv2.contourArea)
M = cv2.moments(largest_contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"]) + area[0][0]
cY = int(M["m01"] / M["m00"]) + area[0][1]
return (cX, cY)
return None
def draw_areas(frame, areas):
colors = {'steering': (255, 0, 0), 'gas': (0, 255, 0), 'brake': (0, 0, 255)}
for area, corners in areas.items():
cv2.rectangle(frame, corners[0], corners[1], colors[area], 2)
cv2.putText(frame, area.capitalize(), (corners[0][0], corners[0][1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[area], 2)
return frame
def detect_gas_state(hsv, area):
# Define the red color range for the gas stripe
lower_red = np.array([0, 120, 70])
upper_red = np.array([10, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
mask = mask[area[0][1]:area[1][1], area[0][0]:area[1][0]]
contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if contours:
largest_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(largest_contour)
stripe_center_y = y + h / 2
#area_height = area[1][1] - area[0][1]
#gas_value = 1.0 - (stripe_center_y / area_height)
gas_value = SCREEN_HEIGHT - float(stripe_center_y)# / SCREEN_HEIGHT
return gas_value
return 0.0
def scale_gas_value(value, min_value, max_value):
if min_value == None or max_value == None:
return value
# Ensure value is within bounds
value = max(min(value, max_value), min_value)
# Scale the value to the range [0, 1]
scaled_value = (value - min_value) / (max_value - min_value)
return scaled_value
CURRENT_GAS = 0
# Continuously capture frames from the camera
while True:
# Capture frame-by-frame
ret, frame = cap.read()
frame = cv2.flip(frame, 1)
SCREEN_HEIGHT, SCREEN_WIDTH = frame.shape[:2]
# If frame is read correctly, ret is True
if not ret:
print("Error: Can't receive frame (stream end?). Exiting ...")
break
# Get the dimensions of the frame
h, w = frame.shape[:2]
# Convert the frame to the HSV color space
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Define the ranges for detecting red, blue, and green colors in HSV
color_ranges = {
'red': [(np.array([0, 120, 70]), np.array([10, 255, 255]))],
'blue': [(np.array([100, 150, 70]), np.array([140, 255, 255]))],
'green': [(np.array([40, 70, 70]), np.array([80, 255, 255]))]
}
detected_positions = {'red': None, 'blue': None, 'green': None}
# Detect color spots based on whether center is cached or not
if cached_center is None:
# Only detect red spot
for lower, upper in color_ranges['red']:
spot_position = detect_color_spots(hsv, lower, upper, areas['steering'])
if spot_position:
detected_positions['red'] = spot_position
positions['red'].append(spot_position)
break
else:
# Detect red, blue, and green spots
for color, ranges in color_ranges.items():
for lower, upper in ranges:
spot_position = detect_color_spots(hsv, lower, upper, areas['steering'])
if spot_position:
detected_positions[color] = spot_position
positions[color].append(spot_position)
break
# Limit the history to the last 50 positions for each color
for color in positions:
if len(positions[color]) > 50:
positions[color].pop(0)
# Calculate the center of rotation if not cached
if cached_center is None:
all_positions = []
for color in positions:
all_positions.extend(positions[color])
center_of_rotation = calculate_center_of_rotation(all_positions)
else:
center_of_rotation = cached_center
if center_of_rotation is not None:
for color, spot in detected_positions.items():
if spot:
cX, cY = spot
# Draw the line from the color spot to the center of rotation
cv2.line(frame, (cX, cY), center_of_rotation, (255, 0, 0), 2)
# Display the centers
cv2.putText(frame, f"{color.capitalize()} Spot Center: ({cX}, {cY})", (cX + 10, cY),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# Draw the center of rotation
cv2.circle(frame, center_of_rotation, 5, (0, 255, 0), -1)
# Calculate the angle between the vertical axis and the radius to the color spot
angle = calculate_absolute_rotation_angle(center_of_rotation, (cX, cY))
controller.angle_to_joystick(angle)
# Draw the rotated circle on a new window
rotated_circle_img = draw_rotated_circle(frame, angle)
cv2.imshow('Rotated Circle', rotated_circle_img)
# Detect gas state
CURRENT_GAS = scale_gas_value(detect_gas_state(hsv, areas['gas']) * 2, MIN_GAS, MAX_GAS)
print(CURRENT_GAS)
controller.pull_gas(CURRENT_GAS)
# Display the gas value
cv2.putText(frame, f"Gas Value: {CURRENT_GAS:.2f}", (areas['gas'][0][0], areas['gas'][0][1] - 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Draw and display the defined areas
frame_with_areas = draw_areas(frame.copy(), areas)
cv2.imshow('Areas', frame_with_areas)
# Display the resulting frame
cv2.imshow('Front Camera', frame)
# Wait for key events
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
elif key == ord(' '):
# Cache the center of rotation when spacebar is pressed
cached_center = center_of_rotation
elif key == ord('1'):
MIN_GAS = CURRENT_GAS
elif key == ord('2'):
MAX_GAS = CURRENT_GAS
# When everything is done, release the capture
cap.release()
cv2.destroyAllWindows()