- 2023.07.01: 🔥新增语言模型 (包括热点模型glm/llama/bloom 来自于mindformers套件)
- 2023.06.01: 我们对经典SOTA模型进行了重构,模块化数据处理,模型定义,训练流程等常用组件,推出MindSpore CV/NLP/Audio/Yolo/OCR等系列
- 原models仓模型实现是基于MindSpore原生API,并且有一定训练推理加速优化
- 更多关于模型精度性能信息,请查阅 benchmark。
model | acc@1 | mindcv recipe | vanilla mindspore |
---|---|---|---|
vgg11 | 71.86 | config | |
vgg13 | 72.87 | config | |
vgg16 | 74.61 | config | link |
vgg19 | 75.21 | config | link |
resnet18 | 70.21 | config | link |
resnet34 | 74.15 | config | link |
resnet50 | 76.69 | config | link |
resnet101 | 78.24 | config | link |
resnet152 | 78.72 | config | link |
resnetv2_50 | 76.90 | config | |
resnetv2_101 | 78.48 | config | |
dpn92 | 79.46 | config | |
dpn98 | 79.94 | config | |
dpn107 | 80.05 | config | |
dpn131 | 80.07 | config | |
densenet121 | 75.64 | config | |
densenet161 | 79.09 | config | |
densenet169 | 77.26 | config | |
densenet201 | 78.14 | config | |
seresnet18 | 71.81 | config | |
seresnet34 | 75.36 | config | |
seresnet50 | 78.31 | config | |
seresnext26 | 77.18 | config | |
seresnext50 | 78.71 | config | |
skresnet18 | 73.09 | config | |
skresnet34 | 76.71 | config | |
skresnet50_32x4d | 79.08 | config | |
resnext50_32x4d | 78.53 | config | |
resnext101_32x4d | 79.83 | config | |
resnext101_64x4d | 80.30 | config | |
resnext152_64x4d | 80.52 | config | |
rexnet_x09 | 77.07 | config | |
rexnet_x10 | 77.38 | config | |
rexnet_x13 | 79.06 | config | |
rexnet_x15 | 79.94 | config | |
rexnet_x20 | 80.64 | config | |
resnest50 | 80.81 | config | |
resnest101 | 82.50 | config | |
res2net50 | 79.35 | config | |
res2net101 | 79.56 | config | |
res2net50_v1b | 80.32 | config | |
res2net101_v1b | 95.41 | config | |
googlenet | 72.68 | config | |
inceptionv3 | 79.11 | config | link |
inceptionv4 | 80.88 | config | link |
mobilenet_v1_025 | 53.87 | config | |
mobilenet_v1_050 | 65.94 | config | |
mobilenet_v1_075 | 70.44 | config | |
mobilenet_v1_100 | 72.95 | config | |
mobilenet_v2_075 | 69.98 | config | |
mobilenet_v2_100 | 72.27 | config | |
mobilenet_v2_140 | 75.56 | config | |
mobilenet_v3_small | 68.10 | config | |
mobilenet_v3_large | 75.23 | config | link |
shufflenet_v1_g3_x0_5 | 57.05 | config | |
shufflenet_v1_g3_x1_5 | 67.77 | config | link |
shufflenet_v2_x0_5 | 57.05 | config | |
shufflenet_v2_x1_0 | 67.77 | config | link |
shufflenet_v2_x1_5 | 57.05 | config | |
shufflenet_v2_x2_0 | 67.77 | config | |
xception | 79.01 | config | link |
ghostnet_50 | 66.03 | config | |
ghostnet_100 | 73.78 | config | |
ghostnet_130 | 75.50 | config | |
nasnet_a_4x1056 | 73.65 | config | |
mnasnet_0.5 | 68.07 | config | |
mnasnet_0.75 | 71.81 | config | |
mnasnet_1.0 | 74.28 | config | |
mnasnet_1.4 | 76.01 | config | |
efficientnet_b0 | 76.89 | config | link |
efficientnet_b1 | 78.95 | config | link |
efficientnet_b2 | 79.80 | link | |
efficientnet_b3 | 80.50 | link | |
efficientnet_v2 | 83.77 | link | |
regnet_x_200mf | 68.74 | config | |
regnet_x_400mf | 73.16 | config | |
regnet_x_600mf | 73.34 | config | |
regnet_x_800mf | 76.04 | config | |
regnet_y_200mf | 70.30 | config | |
regnet_y_400mf | 73.91 | config | |
regnet_y_600mf | 75.69 | config | |
regnet_y_800mf | 76.52 | config | |
mixnet_s | 75.52 | config | |
mixnet_m | 76.64 | config | |
mixnet_l | 78.73 | config | |
hrnet_w32 | 80.64 | config | |
hrnet_w48 | 81.19 | config | |
bit_resnet50 | 76.81 | config | |
bit_resnet50x3 | 80.63 | config | |
bit_resnet101 | 77.93 | config | |
repvgg_a0 | 72.19 | config | |
repvgg_a1 | 74.19 | config | |
repvgg_a2 | 76.63 | config | |
repvgg_b0 | 74.99 | config | |
repvgg_b1 | 78.81 | config | |
repvgg_b2 | 79.29 | config | |
repvgg_b3 | 80.46 | config | |
repvgg_b1g2 | 78.03 | config | |
repvgg_b1g4 | 77.64 | config | |
repvgg_b2g4 | 78.80 | config | |
repmlp_t224 | 76.71 | config | |
convnext_tiny | 81.91 | config | |
convnext_small | 83.40 | config | |
convnext_base | 83.32 | config | |
vit_b_32_224 | 75.86 | config | link |
vit_l_16_224 | 76.34 | config | |
vit_l_32_224 | 73.71 | config | |
swintransformer_tiny | 80.82 | config | link |
pvt_tiny | 74.81 | config | |
pvt_small | 79.66 | config | |
pvt_medium | 81.82 | config | |
pvt_large | 81.75 | config | |
pvt_v2_b0 | 71.50 | config | |
pvt_v2_b1 | 78.91 | config | |
pvt_v2_b2 | 81.99 | config | |
pvt_v2_b3 | 82.84 | config | |
pvt_v2_b4 | 83.14 | config | |
pit_ti | 72.96 | config | |
pit_xs | 78.41 | config | |
pit_s | 80.56 | config | |
pit_b | 81.87 | config | |
coat_lite_tiny | 77.35 | config | |
coat_lite_mini | 78.51 | config | |
coat_tiny | 79.67 | config | |
convit_tiny | 73.66 | config | |
convit_tiny_plus | 77.00 | config | |
convit_small | 81.63 | config | |
convit_small_plus | 81.80 | config | |
convit_base | 82.10 | config | |
convit_base_plus | 81.96 | config | |
crossvit_9 | 73.56 | config | |
crossvit_15 | 81.08 | config | |
crossvit_18 | 81.93 | config | |
mobilevit_xx_small | 68.90 | config | |
mobilevit_x_small | 74.98 | config | |
mobilevit_small | 78.48 | config | |
visformer_tiny | 78.28 | config | |
visformer_tiny_v2 | 78.82 | config | |
visformer_small | 81.76 | config | |
visformer_small_v2 | 82.17 | config | |
edgenext_xx_small | 71.02 | config | |
edgenext_x_small | 75.14 | config | |
edgenext_small | 79.15 | config | |
edgenext_base | 82.24 | config | |
poolformer_s12 | 77.33 | config | |
xcit_tiny_12_p16 | 77.67 | config |
model | map | mindyolo recipe | vanilla mindspore |
---|---|---|---|
yolov8_n | 37.2 | config | |
yolov8_s | 44.6 | config | |
yolov8_m | 50.5 | config | |
yolov8_l | 52.8 | config | |
yolov8_x | 53.7 | config | |
yolov7_t | 37.5 | config | |
yolov7_l | 50.8 | config | |
yolov7_x | 52.4 | config | |
yolov5_n | 27.3 | config | |
yolov5_s | 37.6 | config | link |
yolov5_m | 44.9 | config | |
yolov5_l | 48.5 | config | |
yolov5_x | 50.5 | config | |
yolov4_csp | 45.4 | config | |
yolov4_csp(silu) | 45.8 | config | link |
yolov3_darknet53 | 45.5 | config | link |
yolox_n | 24.1 | config | |
yolox_t | 33.3 | config | |
yolox_s | 40.7 | config | |
yolox_m | 46.7 | config | |
yolox_l | 49.2 | config | |
yolox_x | 51.6 | config | |
yolox_darknet53 | 47.7 | config |
model | map | mind_series recipe | vanilla mindspore |
---|---|---|---|
ssd_vgg16 | 23.2 | link | |
ssd_mobilenetv1 | 22.0 | link | |
ssd_mobilenetv2 | 29.1 | link | |
ssd_resnet50 | 34.3 | link | |
fastrcnn | 58 | link | |
maskrcnn_mobilenetv1 | coming soon | link | |
maskrcnn_resnet50 | coming soon | link |
model | mind_series recipe | vanilla mindspore |
---|---|---|
ocrnet | link | |
deeplab v3 | link | |
deeplab v3 plus | link | |
unet | link | |
unet3d | link |
model | dataset | fscore | mindocr recipe | vanilla mindspore |
---|---|---|---|---|
dbnet_mobilenetv3 | icdar2015 | 77.23 | config | link |
dbnet_resnet18 | icdar2015 | 81.73 | config | link |
dbnet_resnet50 | icdar2015 | 85.05 | config | link |
dbnet++_resnet50 | icdar2015 | 86.74 | config | |
psenet_resnet152 | icdar2015 | 82.06 | config | link |
east_resnet50 | icdar2015 | 84.87 | config | link |
fcenet_resnet50 | icdar2015 | 84.12 | config |
model | dataset | acc | mindocr recipe | vanilla mindspore |
---|---|---|---|---|
svtr_tiny | IC03,13,15,IIIT,etc | 89.02 | config | |
crnn_vgg7 | IC03,13,15,IIIT,etc | 82.03 | config | link |
crnn_resnet34_vd | IC03,13,15,IIIT,etc | 84.45 | config | |
rare_resnet34_vd | IC03,13,15,IIIT,etc | 85.19 | config | link |
model | dataset | acc | mindocr recipe |
---|---|---|---|
mobilenetv3 | RCTW17,MTWI,LSVT | 94.59 | config |
model | dataset | acc | mindface recipe | vanilla mindspore |
---|---|---|---|---|
arcface_mobilefacenet-0.45g | MS1MV2 | 98.70 | config | |
arcface_r50 | MS1MV2 | 99.76 | config | |
arcface_r100 | MS1MV2 | 99.38 | config | link |
arcface_vit_t | MS1MV2 | 99.71 | config | |
arcface_vit_s | MS1MV2 | 99.76 | config | |
arcface_vit_b | MS1MV2 | 99.81 | config | |
arcface_vit_l | MS1MV2 | 99.75 | config | |
retinaface_mobilenet_0.25 | WiderFace | 90.77/88.2/74.76 | config | link |
retinaface_r50 | WiderFace | 95.07/93.61/84.84 | config | link |
model | mindformer recipe | vanilla mindspore |
---|---|---|
bert_base | config | link |
t5_small | config | |
gpt2_small | config | |
gpt2_13b | config | |
gpt2_52b | config | |
pangu_alpha | config | |
glm_6b | config | |
glm_6b_lora | config | |
llama_7b | config | |
llama_13b | config | |
llama_65b | config | |
llama_7b_lora | config | |
bloom_560m | config | |
bloom_7.1b | config | |
bloom_65b | config | |
bloom_176b | config |
MindSpore仅提供下载和预处理公共数据集的脚本。我们不拥有这些数据集,也不对它们的质量负责或维护。请确保您具有在数据集许可下使用该数据集的权限。在这些数据集上训练的模型仅用于非商业研究和教学目的。
致数据集拥有者:如果您不希望将数据集包含在MindSpore中,或者希望以任何方式对其进行更新,我们将根据要求删除或更新所有公共内容。请通过GitHub或Gitee与我们联系。非常感谢您对这个社区的理解和贡献。