-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlamps.py
648 lines (569 loc) · 21.3 KB
/
lamps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import base64
import json
import warnings
import sys
import zlib
from collections import deque, namedtuple, OrderedDict
import skimage.color
import networkx as nx
import numpy as np
from scipy.cluster.vq import kmeans2
from PIL import Image
from PIL.ExifTags import TAGS as EXIF_TAGS
SHOW_INTERMEDIATES = False
SHOW_BLUEPRINT = False
SHOW_PREVIEW = True
ColorEntry = namedtuple('ColorEntry',
['name', 'RGB', 'LAB'])
def BuildColorInfo(colors):
processed_colors = []
for color in colors.keys():
rgb = colors[color]
# LAB colors are for more accurate color assignment
# https://en.wikipedia.org/wiki/Color_difference#CIEDE2000
lab = skimage.color.rgb2lab(rgb.reshape((1, 1, 3)) / 256)
processed_colors.append(ColorEntry(name=color,
RGB=rgb,
LAB=lab.reshape((3))))
return processed_colors
BASE_COLORS = BuildColorInfo({
"signal-red": np.array((255, 0, 0)),
"signal-green": np.array((0, 255, 0)),
"signal-blue": np.array((0, 0, 255)),
"signal-yellow": np.array((255, 255, 0)),
"signal-pink": np.array((255, 0, 255)),
"signal-cyan": np.array((0, 255, 255)),
"signal-white": np.array((255, 255, 255)),
"signal-black": np.array((0, 0, 0)),
})
EXPANDED_LAMP_COLORS = BuildColorInfo({
"signal-white": np.array((255, 255, 255)),
"signal-light-grey": np.array((228, 228, 228)),
"signal-grey": np.array((136, 136, 136)),
"signal-black": np.array((34, 34, 34)),
"signal-pink": np.array((255, 167, 209)),
"signal-red": np.array((229, 0, 0)),
"signal-orange": np.array((229, 149, 0)),
"signal-brown": np.array((160, 106, 66)),
"signal-yellow": np.array((229, 217, 0)),
"signal-light-green": np.array((148, 224, 68)),
"signal-green": np.array((2, 190, 1)),
"signal-cyan": np.array((0, 211, 221)),
"signal-light-blue": np.array((0, 131, 199)),
"signal-blue": np.array((0, 0, 234)),
"signal-light-purple": np.array((207, 110, 228)),
"signal-dark-purple": np.array((130, 0, 128)),
})
DECTORIO_LAMP_COLORS = BuildColorInfo({
"signal-red": np.array((255, 40, 25)),
"signal-orange": np.array((252, 112, 56)),
"signal-tangerine": np.array((255, 147, 35)),
"signal-yellow": np.array((255, 244, 68)),
"signal-green": np.array((0, 242, 43)),
"signal-cyan": np.array((2, 249, 255)),
"signal-aqua": np.array((12, 170, 252)),
"signal-blue": np.array((17, 89, 249)),
"signal-purple": np.array((165, 96, 252)),
"signal-pink": np.array((255, 107, 252)),
"signal-maroon": np.array((127, 0, 0)),
"signal-brown": np.array((153, 99, 35)),
"signal-olive": np.array((127, 127, 2)),
"signal-emerald": np.array((43, 137, 63)),
"signal-teal": np.array((71, 153, 142)),
"signal-navy": np.array((0, 0, 127)),
"signal-violet": np.array((142, 30, 178)),
"signal-black": np.array((56, 33, 142)),
"signal-grey": np.array((204, 204, 204)),
"signal-white": np.array((255, 255, 255)),
})
def compress_blueprint(blueprint):
"""
Convert the given blueprint to factorio's text format.
https://wiki.factorio.com/Blueprint_string_format
"""
blueprint = json.dumps(blueprint).encode("utf-8")
blueprint = zlib.compress(blueprint)
blueprint = base64.b64encode(blueprint)
blueprint = blueprint.decode("utf-8")
return "0" + blueprint
def decompress_blueprint(blueprint):
"""
Decompresses a blueprint.
Works for any blueprint, actually.
https://wiki.factorio.com/Blueprint_string_format
"""
# cut off the leading 0
blueprint = blueprint[1:]
blueprint = base64.b64decode(blueprint)
blueprint = zlib.decompress(blueprint)
return json.loads(blueprint)
def min_cost_colors(centroids, colors):
"""
Assign colors based on min cost flow from centroid to color.
"""
K = len(centroids)
assert K <= len(colors)
# We build a mincost flow as follows:
# source: K output
# edges to each color: cost 0, flow 1
# edges from each color to each centroid: cost L2, flow 1
# edges from each centroid to sink: cost 0, flow 1
# sink: K input
centroid_names = ["C%d" % i for i in range(len(centroids))]
rgb_centroids = [c.reshape((1, 1, 3)) / 256 for c in centroids]
lab_centroids = [skimage.color.rgb2lab(rgb).reshape((3))
for rgb in rgb_centroids]
G = nx.DiGraph()
G.add_node('source', demand=-K)
G.add_node('sink', demand=K)
for c in centroid_names:
G.add_node(c)
G.add_edge('source', c, capacity=1, weight=0)
for k in colors:
G.add_node(k.name)
for c in range(len(centroids)):
distance = skimage.color.deltaE_ciede2000(k.LAB, lab_centroids[c])
G.add_edge(centroid_names[c], k.name, capacity=1,
weight=int(distance))
G.add_edge(k.name, 'sink', capacity=1, weight=0)
flow = nx.algorithms.min_cost_flow(G)
flow_colors = []
for source in sorted(flow.keys()):
if source == 'source':
continue
c = None
for dest in flow[source]:
if flow[source][dest] > 0:
if c:
# TODO: can this happen if floating point result?
raise RuntimeError("Multiple colors mapped to same source")
flow_colors.append(dest)
return flow_colors
def build_combinator(entity_number, x, y, color, enabled):
"""
Creates a constant combinator.
The combinator emits the given color signal.
"""
combinator = {
"entity_number": entity_number,
"name": "constant-combinator",
"position": {
"x": x,
"y": y
},
"direction": 6,
"control_behavior": {
"filters": [
{
"signal": {
"type": "virtual",
"name": color
},
"count": 1 if enabled else 0,
"index": 1
}
]
}
}
return combinator
def build_lamp(entity_number, x, y):
"""
Builds a lamp blueprint.
"""
lamp = {
"entity_number": entity_number,
"name": "small-lamp",
"position": {
"x": x,
"y": y
},
"control_behavior": {
"circuit_condition": {
"first_signal": {
"type": "virtual",
"name": "signal-anything"
},
"constant": 0,
"comparator": ">"
},
"use_colors": True
}
}
return lamp
def add_connection(e1, e2):
e2n = e2["entity_number"]
if "connections" not in e1:
e1["connections"] = { "1": { "green": [] } }
e1["connections"]["1"]["green"].append({"entity_id": e2n})
def add_bidirectional_connection(e1, e2):
add_connection(e1, e2)
add_connection(e2, e1)
def convert_entities_to_blueprint(entities):
blueprint = {
"blueprint": {
"icons": [
{
"signal": {
"type": "item",
"name": "small-lamp"
},
"index": 1
}
],
"item": "blueprint"
},
}
blueprint["blueprint"]["entities"] = entities
return blueprint
# All neighbors with -X or 0X and -Y within 10 spaces
# Greatly cuts down the number of combinators needed
# Ordered like this so the wires don't get excessively long
# -1,0 and 0,-1 are handled separately
POSSIBLE_NEIGHBORS = [(-1, -1), (-1, 1),
(-2, 0), (0, -2),
(-2, -1), (-1, -2), (-2, 1), (-1, 2),
(-3, 0), (0, -3), (-2, -2), (-2, 2),
(-1, 3), (-3, 1), (-3, -1), (-1, -3),
(-3, 2), (-3, -2), (-4, 0), (0, -4),
(-4, 2), (-4, 1), (-5, 0), (-4, -1), (-4, -2),
(-1, 4), (-2, 4), (-3, 4),
(-2, 3), (-3, 3), (-4, 3),
(-2, -3), (-3, -3), (-4, -3),
(-1, -4), (-2, -4), (-3, -4), (0, -5)]
def convert_to_blueprint(pixel_colors, width, height,
disable_black):
entities = []
lamps = {}
lamp_groupings = {}
grouping_lamps = {}
for i in range(height):
for j in range(width):
entity_num = len(entities) + 1
lamp = build_lamp(entity_num,
j * 2 - width + 1,
i * 2 - height)
lamps[(i, j)] = lamp
lamp_groupings[(i, j)] = entity_num
grouping_lamps[entity_num] = [(i, j)]
entities.append(lamp)
def merge_groupings(x, y):
if x == y:
return False
if len(grouping_lamps[y]) > len(grouping_lamps[x]):
x, y = y, x
for (i, j) in grouping_lamps[y]:
lamp_groupings[(i, j)] = x
grouping_lamps[x].extend(grouping_lamps[y])
grouping_lamps[y] = []
return True
for i in range(height):
for j in range(width-1):
if pixel_colors[i][j] == pixel_colors[i][j+1]:
if merge_groupings(lamp_groupings[(i, j)],
lamp_groupings[(i, j+1)]):
add_bidirectional_connection(lamps[(i, j)],
lamps[(i, j+1)])
for i in range(height-1):
for j in range(width):
if pixel_colors[i][j] == pixel_colors[i+1][j]:
if merge_groupings(lamp_groupings[(i, j)],
lamp_groupings[(i+1, j)]):
add_bidirectional_connection(lamps[(i, j)],
lamps[(i+1, j)])
for i in range(height):
for j in range(width):
for ni, nj in POSSIBLE_NEIGHBORS:
if i+ni < 0 or i+ni >= height:
continue
if j+nj < 0 or j+nj >= width:
continue
if pixel_colors[i][j] == pixel_colors[i+ni][j+nj]:
if merge_groupings(lamp_groupings[(i, j)],
lamp_groupings[(i+ni, j+nj)]):
add_bidirectional_connection(lamps[(i, j)],
lamps[(i+ni, j+nj)])
# add combinators for the colors
for group, group_lamps in grouping_lamps.items():
if len(group_lamps) == 0:
continue
i, j = group_lamps[0]
color = pixel_colors[i][j]
enabled = not (color == 'signal-black' and disable_black)
combinator = build_combinator(len(entities) + 1,
j * 2 - width,
i * 2 - height,
color, enabled)
add_bidirectional_connection(lamps[(i, j)], combinator)
entities.append(combinator)
# add enough poles to cover the image
pole_x_start = -width+3
if pole_x_start % 2 == 1:
pole_x_start = pole_x_start - 1
pole_x = list(range(pole_x_start, width-2, 6))
if len(pole_x) == 0:
pole_x.append(pole_x_start)
if pole_x[-1] < width - 3:
pole_x.append(width - 3)
pole_y_start = -height+3
pole_y = list(range(pole_y_start, height-2, 8))
if len(pole_y) == 0:
pole_y.append(pole_y_start)
if pole_y[-1] < height - 3:
pole_y.append(height - 3)
for i in pole_x:
for j in pole_y:
pole = {
"entity_number": len(entities) + 1,
"name": "medium-electric-pole",
"position": {
"x": i,
"y": j
}
}
entities.append(pole)
return convert_entities_to_blueprint(entities)
def convert_image_to_array(image):
image = np.asarray(image, dtype=np.float32)
if len(image.shape) == 2:
# BW image
image = np.expand_dims(image, 2)
elif len(image.shape) != 3:
raise RuntimeError("Unknown matrix shape: %s" % str(image.shape))
if image.shape[2] == 1:
print("Converting BW by stacking 3 copies. Efficiency be damned")
image = np.tile(image, (1, 1, 3))
if image.shape[2] == 4:
# ignore alpha channel
image = image[:, :, :3]
elif image.shape[2] != 3:
raise RuntimeError("Only works on BW or RGB(a) images. "
"Color depth: %d" % image.shape[2])
return image
def nearest_colors(centroids, colors):
label_to_colors = []
for centroid in centroids:
rgb = centroid.reshape((1, 1, 3)) / 256
lab = skimage.color.rgb2lab(rgb).reshape((3))
distances = [skimage.color.deltaE_ciede2000(color.LAB, lab)
for color in colors]
label_to_colors.append(colors[np.argmin(distances)].name)
return label_to_colors
def convert_image_to_blueprint_nearest(image, colors, disable_black):
width, height = image.size
flat_image = convert_image_to_array(image)
flat_image = flat_image.reshape((width * height, 3))
num_centroids = max(len(colors) * 2, 100)
num_centroids = min(width * height, num_centroids)
centroids, labels = kmeans2(flat_image, num_centroids,
iter=50, minit='points')
# centroids will be a Kx3 array representing colors
# labels will be which centroid for each pixel
# so centroids[labels] will be the pixels mapped to their K colors
flat_kmeans_image = centroids[labels]
kmeans_image = flat_kmeans_image.reshape((height, width, 3))
kmeans_image = np.array(kmeans_image, dtype=np.int8)
new_image = Image.fromarray(kmeans_image, "RGB")
label_to_colors = nearest_colors(centroids, colors)
pixel_colors = np.array([label_to_colors[x] for x in labels])
pixel_colors = pixel_colors.reshape((height, width))
blueprint = convert_to_blueprint(pixel_colors, width, height,
disable_black)
return compress_blueprint(blueprint), new_image
def convert_image_to_blueprint_kmeans(image, colors, disable_black):
width, height = image.size
flat_image = convert_image_to_array(image)
flat_image = flat_image.reshape((width * height, 3))
num_centroids = min(len(colors), width * height)
centroids, labels = kmeans2(flat_image, num_centroids,
iter=50, minit='points')
# centroids will be a Kx3 array representing colors
# labels will be which centroid for each pixel
# so centroids[labels] will be the pixels mapped to their K colors
flat_kmeans_image = centroids[labels]
kmeans_image = flat_kmeans_image.reshape((height, width, 3))
kmeans_image = np.array(kmeans_image, dtype=np.int8)
new_image = Image.fromarray(kmeans_image, "RGB")
label_to_colors = min_cost_colors(centroids, colors)
pixel_colors = np.array([label_to_colors[x] for x in labels])
pixel_colors = pixel_colors.reshape((height, width))
blueprint = convert_to_blueprint(pixel_colors, width, height,
disable_black)
return compress_blueprint(blueprint), new_image
def convert_blueprint_to_preview(blueprint, colors):
"""
Converts one of the blueprints created above back to an image.
Useful for displaying previews and for verifying that the
blueprint was sensible.
"""
color_map = {}
for color in colors:
color_map[color.name] = color.RGB
entities = decompress_blueprint(blueprint)["blueprint"]["entities"]
horizon = deque()
entity_map = {}
entity_colors = {}
for e in entities:
entity_map[e["entity_number"]] = e
if e["name"] == "constant-combinator":
horizon.append(e["entity_number"])
color = e["control_behavior"]["filters"][0]["signal"]["name"]
entity_colors[e["entity_number"]] = color
while len(horizon) > 0:
e = horizon.popleft()
color = entity_colors[e]
for n in entity_map[e]["connections"]["1"]["green"]:
if n["entity_id"] not in entity_colors:
horizon.append(n["entity_id"])
entity_colors[n["entity_id"]] = color
lamps = [e for e in entities if e["name"] == "small-lamp"]
min_x = min(e["position"]["x"] for e in lamps)
min_y = min(e["position"]["y"] for e in lamps)
max_x = max(e["position"]["x"] for e in lamps)
max_y = max(e["position"]["y"] for e in lamps)
width = max_x - min_x + 6
height = max_y - min_y + 6
image = np.zeros((height, width, 3), dtype=np.int8)
for lamp in lamps:
x = lamp["position"]["x"] - min_x
y = lamp["position"]["y"] - min_y
color = entity_colors[lamp["entity_number"]]
color = color_map[color]
image[y+2, x+2, :] = color
image[y+3, x+2, :] = color
image[y+2, x+3, :] = color
image[y+3, x+3, :] = color
return Image.fromarray(image, "RGB")
def resize_image(image, shape=None, lamps=None, default=False):
width, height = image.size
if shape:
if lamps or default:
raise RuntimeError("Can only specify one resize method")
new_width, new_height = shape
elif default:
if lamps:
raise RuntimeError("Can only specify one resize method")
if width < 90 and height < 90:
new_width = width
new_height = height
elif width > height:
new_width = 90
new_height = int(height / width * new_width)
elif height > width:
new_height = 90
new_width = int(width / height * new_height)
else:
new_height = 90
new_width = 90
elif lamps:
max_d = max(width, height)
min_d = min(width, height)
scaled_min = (lamps / (max_d / min_d)) ** 0.5
scaled_max = int(scaled_min * max_d / min_d)
scaled_min = int(scaled_min)
if width > height:
new_width = scaled_max
new_height = scaled_min
else:
new_height = scaled_max
new_width = scaled_min
else:
raise RuntimeError("No resize method specified")
new_width = max(1, new_width)
new_height = max(1, new_height)
if new_width == width and new_height == height:
print("Original image size: %s. Not resizing" %
str(image.size))
else:
print("Original image size: %s. Resizing to (%d, %d)" %
(str(image.size), new_width, new_height))
image = image.resize((new_width, new_height))
return image
# https://www.daveperrett.com/articles/2012/07/28/exif-orientation-handling-is-a-ghetto/
# rotation, flip
ORIENTATIONS = {
1: (0, False),
2: (0, True),
3: (180, False),
4: (180, True),
5: (270, True),
6: (270, False),
7: (90, True),
8: (90, False),
}
def get_exif_tag(image):
"""
Returns an exif tag if possible, otherwise None.
Some images don't have exif attached, and some image types don't
even support exif. We catch those errors and return None
silently.
"""
try:
exif = image._getexif()
if exif:
for tag in image._getexif().keys():
if EXIF_TAGS[tag] == 'Orientation':
return image._getexif()[tag]
except AttributeError:
# some images don't have exif
pass
return None
def open_rotated_image(path):
"""
Opens an image from disk, applies exif rotation if relevant.
"""
warnings.simplefilter('error', Image.DecompressionBombWarning)
image = Image.open(path)
orientation = get_exif_tag(image)
if orientation:
if orientation not in ORIENTATIONS:
print("Unknown orientation %d" % orientation)
else:
rotation, flip = ORIENTATIONS.get(orientation)
if rotation != 0:
image = image.rotate(rotation, expand=True)
if flip:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
return image
def extract_blueprint_stats(bp):
"""
Given a blueprint, extracts stats.
Stats returned are how many of each item are in the blueprint.
Items are alphabetized.
"""
entities = decompress_blueprint(bp)["blueprint"]["entities"]
names = {}
for e in entities:
names[e["name"]] = names.get(e["name"], 0) + 1
stats = OrderedDict()
for name, quantity in sorted(names.items()):
stats[name] = quantity
return stats
#COLORS = EXPANDED_LAMP_COLORS
COLORS = BASE_COLORS
if __name__ == '__main__':
path = sys.argv[1]
image = open_rotated_image(path)
if len(sys.argv) > 2:
width = int(sys.argv[2])
height = int(sys.argv[3])
shape = (width, height)
image = resize_image(image, shape=shape)
if SHOW_INTERMEDIATES:
image.show()
bp, new_image = convert_image_to_blueprint_kmeans(image, COLORS, True)
if SHOW_INTERMEDIATES:
new_image.show()
if SHOW_BLUEPRINT:
print
print("BLUEPRINT")
print(bp)
preview = convert_blueprint_to_preview(bp, COLORS)
if SHOW_PREVIEW:
preview.show()
stats = extract_blueprint_stats(bp)
entity_names = list(stats.keys())
entity_names.sort()
print()
print("Entities used:")
for name in entity_names:
print(" %s: %d" % (name, stats[name]))