-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
48 lines (36 loc) · 1.83 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/python3
import numpy as np
import pandas as pd
import streamlit as st
from algorithms import find_s, candidate_elimination
# Configuring page elements
st.beta_set_page_config(page_title="ML - Concept Learning")
# Suppress warnings
st.set_option('deprecation.showfileUploaderEncoding', False)
st.title("Concept Learning Algorithms")
st.subheader("You can use anyone of the input methods!")
uploaded_file = st.file_uploader("Upload your dataset", type="csv")
text_input = st.text_area("Enter the data: columns separated by ',' and rows in newline\n(after writing data press ctrl+enter)")
if len(text_input) != 0 or uploaded_file is not None:
header = st.checkbox("Does dataset contain header?", value=True)
if uploaded_file is not None:
if header is False:
data = pd.read_csv(uploaded_file, header=None)
else:
data = pd.read_csv(uploaded_file)
else:
if len(text_input) != 0:
data = pd.DataFrame(list(map(lambda x: x.split(','), text_input.split())))
if header is True:
data.columns = data.iloc[0]
data.drop(0, inplace=True)
show_data = st.checkbox("Show Data")
if show_data:
st.dataframe(data)
label_col = st.selectbox("Select the Label columns", options=data.columns, index=len(data.columns)-1)
pos_label = st.selectbox("What is the value of positive label?", options=data[label_col].unique())
algo = st.sidebar.selectbox("Select the algorithm", ['Find S', 'Candidate Elimination'])
if algo == 'Find S':
find_s(data.loc[:, data.columns != label_col].values, data[label_col].values, pos=pos_label, print_funct=st.write)
elif algo == 'Candidate Elimination':
candidate_elimination(data.loc[:, data.columns != label_col].values, data[label_col].values, pos=pos_label, print_funct=st.write)