-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmodelling_baichuan.py
843 lines (724 loc) · 38.8 KB
/
modelling_baichuan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.
from .configuration_baichuan import BaichuanConfig # 导入当前包下的 `configuration_baichuan` 模块中的 `BaichuanConfig` 类。
from .generation_utils import build_chat_input, TextIterStreamer # 导入当前包下的 `generation_utils` 模块中的 `build_chat_input` 和 `TextIterStreamer`。
import math # 导入Python的内置数学函数库。
from threading import Thread # 导入Python的多线程库中的 `Thread` 类。
from typing import List, Optional, Tuple, Union # 导入Python的类型注释库,这里导入了 `List`、`Optional`、`Tuple` 和 `Union`。
import torch # 导入PyTorch框架。
from torch import nn # 从PyTorch中导入神经网络库。
from torch.nn import CrossEntropyLoss # 从PyTorch的神经网络库中导入交叉熵损失函数。
from torch.nn import functional as F # 从PyTorch的神经网络库中导入功能模块,并为其取别名`F`。
from transformers import PreTrainedModel, PretrainedConfig # 从`transformers`库中导入 `PreTrainedModel` 和 `PretrainedConfig`。
from transformers.activations import ACT2FN # 从`transformers`库中导入激活函数的映射表 `ACT2FN`。
from transformers.generation.utils import GenerationConfig # 从`transformers`库中的`generation.utils`模块导入`GenerationConfig`。
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast # 从`transformers`库中的`modeling_outputs`模块导入`BaseModelOutputWithPast`和`CausalLMOutputWithPast`。
from transformers.utils import logging, ContextManagers # 从`transformers`库中的`utils`模块导入`logging`和`ContextManagers`。
import os # 导入Python的内置OS模块,用于处理操作系统相关任务。
from contextlib import contextmanager # 从Python的`contextlib`模块导入`contextmanager`,它用于创建上下文管理器。
from accelerate import init_empty_weights # 从`accelerate`库中导入`init_empty_weights`函数。
logger = logging.get_logger(__name__) # 使用`transformers`提供的日志功能创建一个日志器对象,`__name__`是当前模块的名称。
# 试图从 `xformers` 库中导入 `ops` 模块,并为其取别名`xops`。
try:
from xformers import ops as xops
except ImportError: # 如果导入失败(即没有正确安装`xformers`库)
xops = None
logger.warning(
"Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
)
# 定义了一个辅助函数`_get_interleave`。
def _get_interleave(n):
# 内嵌函数`_get_interleave_power_of_2`,用于计算并返回一个列表。
def _get_interleave_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
# 根据`n`是否是2的整数次幂来调用内部函数,并返回一个列表。
if math.log2(n).is_integer():
return _get_interleave_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
_get_interleave_power_of_2(closest_power_of_2)
+ _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
# 定义了一个辅助函数`_fill_with_neg_inf`。
def _fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
# 定义了一个辅助函数`_buffered_future_mask`。
def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
_future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1)
_future_mask = _future_mask.unsqueeze(0) + alibi
new_future_mask = _future_mask.to(tensor)
return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos]
# 定义了一个辅助函数`_gen_alibi_mask`。
def _gen_alibi_mask(tensor, n_head, max_pos):
slopes = torch.Tensor(_get_interleave(n_head))
position_point = torch.arange(max_pos) - max_pos + 1
position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1)
diag = torch.diag(position_point[0])
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2)
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point
alibi = alibi.view(n_head, 1, max_pos)
alibi_mask = torch.triu(_fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1)
alibi_mask = alibi_mask.unsqueeze(0) + alibi
return alibi_mask
# 定义了一个层归一化的变体:RMSNorm。
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, epsilon=1e-6):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
self.epsilon = epsilon
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
# 定义了一个多层感知机(MLP)类。
class MLP(torch.nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias
# 定义 BaichuanAttention 类,是一个 PyTorch 神经网络模块
class BaichuanAttention(torch.nn.Module):
# 构造函数,接收 BaichuanConfig 配置类实例
def __init__(self, config: BaichuanConfig):
super().__init__() # 调用父类的构造函数
self.config = config # 保存传入的配置
self.hidden_size = config.hidden_size # 从配置中取出隐藏层大小
self.num_heads = config.num_attention_heads # 从配置中取出注意力头数
self.head_dim = self.hidden_size // self.num_heads # 计算每个注意力头的维度
self.max_position_embeddings = config.model_max_length # 从配置中取出模型的最大长度
# 确保 hidden_size 可以被 num_heads 整除
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
)
# 定义一个线性层,用于获取查询、键和值
self.W_pack = torch.nn.Linear(
self.hidden_size, 3 * self.hidden_size, bias=False
)
# 定义一个输出线性层
self.o_proj = torch.nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
# 辅助函数,用于重新整形张量以适应注意力计算
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
# 前向传播函数
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size() # 获取输入的批次大小、序列长度和隐藏层大小
# 使用线性变换获取查询、键和值
proj = self.W_pack(hidden_states)
proj = (
proj.unflatten(-1, (3, self.hidden_size))
.unsqueeze(0)
.transpose(0, -2)
.squeeze(-2)
)
query_states = (
proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
key_states = (
proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
value_states = (
proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
)
# 如果给定了过去的键值对,则连接它们
if past_key_value is not None:
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
# 根据 use_cache 的值来决定是否保存键和值
past_key_value = (key_states, value_states) if use_cache else None
# 判断是否有 xformers,并根据条件使用不同的注意力计算方式
if xops is not None and self.training:
attn_weights = None
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=attention_mask)
attn_output = attn_output.transpose(1, 2)
else:
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
# 对注意力权重应用掩码
if attention_mask is not None:
if q_len == 1: # 缓存中的推断
if len(attention_mask.size()) == 4:
attention_mask = attention_mask[:, :, -1:, :]
else:
attention_mask = attention_mask[:, -1:, :]
attn_weights = attn_weights + attention_mask
attn_weights = torch.max(
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
)
# 获取注意力权重并计算注意力输出
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) # 对最后一个维度进行 softmax,得到注意力权重
attn_output = torch.matmul(attn_weights, value_states) # 使用权重对 value 进行加权求和得到注意力输出
attn_output = attn_output.transpose(1, 2) # 调换维度,以便之后的处理
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) # 重新整形,以得到最终输出的形状
attn_output = self.o_proj(attn_output) # 通过输出的线性层
# 如果不输出注意力权重,则设置为 None
if not output_attentions:
attn_weights = None
# 返回注意力输出,注意力权重(如果需要)和过去的键值对(如果使用缓存)
return attn_output, attn_weights, past_key_value
class BaichuanLayer(torch.nn.Module): # 定义一个名为 "BaichuanLayer" 的 PyTorch 模型类,它继承了torch.nn.Module
def __init__(self, config: BaichuanConfig): # 构造函数接收一个名为config的BaichuanConfig类型参数
super().__init__() # 调用父类(torch.nn.Module)的初始化方法
self.hidden_size = config.hidden_size # 从config中提取hidden_size并赋值给类变量self.hidden_size
self.self_attn = BaichuanAttention(config=config) # 用config初始化BaichuanAttention对象,并赋值给self.self_attn
self.mlp = MLP( # 初始化一个MLP对象,并赋值给self.mlp
hidden_size=self.hidden_size, # MLP的hidden_size参数等于我们之前设置的self.hidden_size
intermediate_size=config.intermediate_size, # 从config中提取intermediate_size作为MLP的参数
hidden_act=config.hidden_act, # 从config中提取hidden_act作为MLP的参数
)
self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) # 初始化一个RMSNorm对象,并赋值给self.input_layernorm
self.post_attention_layernorm = RMSNorm( # 初始化另一个RMSNorm对象,并赋值给self.post_attention_layernorm
config.hidden_size, epsilon=config.rms_norm_eps
)
def forward( # 定义前向传播函数
self,
hidden_states: torch.Tensor, # 输入参数为一个tensor,代表隐藏状态
attention_mask: Optional[torch.Tensor] = None, # 可选的attention_mask参数,默认为None
past_key_value: Optional[Tuple[torch.Tensor]] = None, # 可选的past_key_value参数,默认为None
output_attentions: Optional[bool] = False, # 可选的output_attentions参数,默认为False
use_cache: Optional[bool] = False, # 可选的use_cache参数,默认为False
) -> Tuple[ # 函数的返回类型为一个Tuple
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
residual = hidden_states # 将输入的hidden_states保存为residual以便后面使用
hidden_states = self.input_layernorm(hidden_states) # 将hidden_states通过self.input_layernorm进行处理
# Self Attention部分
hidden_states, self_attn_weights, present_key_value = self.self_attn( # 使用self.self_attn处理hidden_states,并返回三个结果
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states # 将处理后的hidden_states与原始的residual进行加和,实现residual connection
# Fully Connected部分
residual = hidden_states # 更新residual为处理后的hidden_states
hidden_states = self.post_attention_layernorm(hidden_states) # 将hidden_states通过self.post_attention_layernorm进行处理
hidden_states = self.mlp(hidden_states) # 将hidden_states通过self.mlp进行处理
hidden_states = residual + hidden_states # 再次使用residual connection
outputs = (hidden_states,) # 将处理后的hidden_states放入outputs tuple中
if use_cache: # 如果use_cache为True
outputs += (present_key_value,) # 将present_key_value也加入到outputs tuple中
return outputs # 返回outputs tuple
class BaichuanPreTrainedModel(PreTrainedModel): # 定义一个名为 "BaichuanPreTrainedModel" 的类,继承了 "PreTrainedModel" 类
config_class = BaichuanConfig # 定义一个类属性,将BaichuanConfig赋值给config_class,用于指定该模型的配置类是什么
base_model_prefix = "model" # 定义一个类属性,其值是字符串 "model",通常用于标识模型的主要子模块或基础模型
supports_gradient_checkpointing = True # 定义一个类属性,标识该模型支持梯度检查点功能,可以节省显存但会使计算稍慢
_no_split_modules = ["BaichuanLayer"] # 定义一个类属性,包含模型内不应该被拆分为子模型的模块名称
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] # 定义一个类属性,列出在加载模型时应该忽略的意外键名
def _init_weights(self, module): # 定义一个方法用于初始化模型权重
std = self.config.initializer_range # 从模型的配置中获取权重初始化的标准差
if isinstance(module, torch.nn.Linear): # 如果传入的模块是线性层
module.weight.data.normal_(mean=0.0, std=std) # 使用正态分布初始化线性层的权重,均值为0,标准差为std
if module.bias is not None: # 如果线性层有偏置
module.bias.data.zero_() # 使用0来初始化偏置
elif isinstance(module, torch.nn.Embedding): # 如果传入的模块是嵌入层
module.weight.data.normal_(mean=0.0, std=std) # 使用正态分布初始化嵌入层的权重,均值为0,标准差为std
if module.padding_idx is not None: # 如果嵌入层有填充索引
module.weight.data[module.padding_idx].zero_() # 将填充索引对应的嵌入向量初始化为0
def _set_gradient_checkpointing(self, module, value=False): # 定义一个方法用于设置模块的梯度检查点
if isinstance(module, BaichuanModel): # 如果传入的模块是BaichuanModel类型
module.gradient_checkpointing = value # 设置模块的梯度检查点属性为给定的value值
class BaichuanModel(BaichuanPreTrainedModel): # 定义一个名为 "BaichuanModel" 的类,它继承了 "BaichuanPreTrainedModel" 类
def __init__(self, config: BaichuanConfig): # 定义类的构造函数,接受一个名为 "config" 的参数,该参数是一个BaichuanConfig对象
super().__init__(config) # 调用父类 (BaichuanPreTrainedModel) 的构造函数并传入config参数
self.padding_idx = config.pad_token_id # 从config中获取pad_token_id并设置为类的属性
self.vocab_size = config.vocab_size # 从config中获取词汇表的大小并设置为类的属性
self.n_head = config.num_attention_heads # 从config中获取注意力头的数量并设置为类的属性
self.embed_tokens = torch.nn.Embedding( # 创建一个嵌入层
config.vocab_size, config.hidden_size, self.padding_idx # 指定词汇表大小、嵌入大小和填充索引
)
self.layers = torch.nn.ModuleList( # 创建一个模块列表
[BaichuanLayer(config) for _ in range(config.num_hidden_layers)] # 根据隐藏层的数量多次实例化BaichuanLayer模块
)
self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) # 创建一个RMSNorm正则化层
self.gradient_checkpointing = config.gradient_checkpointing # 设置梯度检查点属性
self.post_init() # 调用post_init方法,可能在父类中定义,用于进一步的初始化
self.max_cache_pos = config.model_max_length # 设置模型的最大缓存位置
self.first_run = True # 设置一个标志,表示模型是否是第一次运行
self.alibi_mask = None # 初始化一个alibi_mask属性,值为None
def get_input_embeddings(self): # 定义一个方法用于获取输入的嵌入
return self.embed_tokens # 返回嵌入层
def set_input_embeddings(self, value): # 定义一个方法用于设置输入的嵌入
self.embed_tokens = value # 将传入的嵌入赋值给嵌入层属性
def get_alibi_mask(self, tensor, seq_length_with_past): # 定义一个方法用于获取alibi mask
if self.training: # 如果模型处于训练模式
slopes = torch.Tensor(_get_interleave(self.n_head)) # 获取交错值
position_point = (
torch.arange(seq_length_with_past) - seq_length_with_past + 1 # 计算位置点
)
position_point = (
position_point.unsqueeze(0)
.unsqueeze(0)
.expand(self.n_head, seq_length_with_past, -1) # 调整位置点的形状并扩展
)
diag = torch.diag(position_point[0]) # 获取对角线
position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(
-1, -2
) # 调整位置点的形状
alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point # 计算alibi值
mask = _buffered_future_mask( # 获取未来的mask
tensor, seq_length_with_past, alibi, self.n_head
)
else: # 如果模型处于评估模式
if self.first_run: # 如果是第一次运行
self.first_run = False # 设置标志为False
self.register_buffer( # 注册一个缓冲区
"future_mask",
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
tensor
),
persistent=False, # 使缓冲区不持久
)
if seq_length_with_past > self.max_cache_pos: # 如果当前序列长度超过最大缓存位置
self.max_cache_pos = seq_length_with_past # 更新最大缓存位置
self.register_buffer( # 再次注册一个缓冲区
"future_mask",
_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos).to(
tensor
),
persistent=False, # 使缓冲区不持久
)
mask = self.future_mask[
: self.n_head, :seq_length_with_past, :seq_length_with_past
] # 获取未来的mask
return mask # 返回mask
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, BaseModelOutputWithPast]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot provide both input_ids and inputs_embeds simultaneously"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You need to provide input_ids or inputs_embeds")
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
seq_length_with_past = seq_length
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self.training:
if (
self.alibi_mask is None
or self.alibi_mask.shape[-1] != seq_length_with_past
):
self.alibi_mask = self.get_alibi_mask(
inputs_embeds, seq_length_with_past
)
alibi_mask = self.alibi_mask
else:
alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
if attention_mask is not None:
if len(attention_mask.shape) == 2:
expanded_mask = attention_mask.to(alibi_mask.dtype)
expanded_mask = torch.tril(
torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
else:
expanded_mask = attention_mask
bsz = inputs_embeds.size(0)
src_len, tgt_len = alibi_mask.size()[-2:]
expanded_mask = (
expanded_mask.unsqueeze(1)
.expand(bsz, 1, src_len, tgt_len)
.to(alibi_mask.dtype)
)
inverted_mask = 1.0 - expanded_mask
inverted_mask = inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min
)
attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
else:
attention_mask = alibi_mask
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class NormHead(nn.Module):
def __init__(self, hidden_size, vocab_size, bias=False):
super().__init__()
self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
self.first_flag = True
def forward(self, hidden_states):
if self.training:
norm_weight = nn.functional.normalize(self.weight)
self.first_flag = True
elif self.first_flag:
self.first_flag = False
self.weight.data = nn.functional.normalize(self.weight)
norm_weight = self.weight
else:
norm_weight = self.weight
return nn.functional.linear(hidden_states, norm_weight)
_init_weights = True
@contextmanager
def no_init_weights(_enable=True):
global _init_weights
old_init_weights = _init_weights
if _enable:
_init_weights = False
try:
yield
finally:
_init_weights = old_init_weights
class BaichuanForCausalLM(BaichuanPreTrainedModel):
def __init__(self, config, *model_args, **model_kwargs):
super().__init__(config, *model_args, **model_kwargs)
self.model = BaichuanModel(config)
self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
#if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
try:
from .quantizer import quantize_offline, init_model_weight_int4
except ImportError:
raise ImportError(f"Needs quantize_offline to run quantize.")
quantize_offline(self, 4)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
*model_args,
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
cache_dir: Optional[Union[str, os.PathLike]] = None,
ignore_mismatched_sizes: bool = False,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
use_safetensors: bool = None,
**kwargs,
):
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=False,
proxies=None,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder="",
_from_auto=False,
_from_pipeline=None,
**kwargs,
)
else:
model_kwargs = kwargs
if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
try:
from .quantizer import init_model_weight_int4
from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
from accelerate.utils import CustomDtype
from accelerate.utils import get_balanced_memory
except ImportError:
raise ImportError(f"Needs import model weight init func to run quantize.")
# Instantiate model.
init_contexts = [no_init_weights(_enable=True)]
init_contexts.append(init_empty_weights())
with ContextManagers(init_contexts):
model = cls(config)
model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
state_dict = torch.load(model_file, map_location="cpu")
model.is_quantized = True
device_map = kwargs.pop("device_map", None)
torch_dtype = kwargs.pop("torch_dtype", None)
if device_map is not None:
kwargs = {"no_split_module_classes": model._no_split_modules}
target_dtype = CustomDtype.INT4
max_memory = get_balanced_memory(
model,
dtype=target_dtype,
low_zero=(device_map == "balanced_low_0"),
max_memory=None,
**kwargs,
)
kwargs["max_memory"] = max_memory
device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
model = init_model_weight_int4(config, model, state_dict)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
# If it is a model with generation capabilities, attempt to load the generation config
if model.can_generate():
try:
model.generation_config = GenerationConfig.from_pretrained(
pretrained_model_name_or_path,
cache_dir=cache_dir,
force_download=force_download,
resume_download=False,
proxies=None,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder="",
_from_auto=False,
_from_pipeline=None,
**kwargs,
)
except (OSError, TypeError):
logger.info(
"Generation config file not found, using a generation config created from the model config."
)
pass
if device_map is not None:
dispatch_model(model, device_map=device_map)
return model
return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
use_safetensors=use_safetensors, **kwargs)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
softmax_normalizer = shift_logits.max(-1).values ** 2
z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels) + z_loss
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def quantize(self, bits: int):
try:
from .quantizer import quantize_online
except ImportError:
raise ImportError(f"Needs QLinear to run quantize.")
return quantize_online(self, bits)
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
return tuple(
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
for layer_past in past_key_values
)
def _build_chat_input(
self, tokenizer, messages: List[dict], max_new_tokens: int = 0
):
max_new_tokens = max_new_tokens or self.generation_config.max_new_tokens
max_input_tokens = self.config.model_max_length - max_new_tokens
max_input_tokens = max(self.config.model_max_length // 2, max_input_tokens)
total_input, round_input = [], []
for i, message in enumerate(messages[::-1]):
content_tokens = tokenizer.encode(message["content"])
if message["role"] == "user":
round_input = (
[self.generation_config.user_token_id]
+ content_tokens
+ round_input
)
if (
total_input
and len(total_input) + len(round_input) > max_input_tokens
):
break
else:
total_input = round_input + total_input
if len(total_input) >= max_input_tokens:
break
else:
round_input = []
elif message["role"] == "assistant":
round_input = (
[self.generation_config.assistant_token_id]
+ content_tokens
+ [self.generation_config.eos_token_id]
+ round_input
)
else:
raise ValueError(f"message role not supported yet: {message['role']}")
total_input = total_input[-max_input_tokens:] # truncate left
total_input.append(self.generation_config.assistant_token_id)
total_input = torch.LongTensor([total_input]).to(self.device)
return total_input
def chat(self, tokenizer, messages: List[dict], stream=False,
generation_config: Optional[GenerationConfig]=None):
generation_config = generation_config or self.generation_config
input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
if stream:
streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
Thread(target=self.generate, kwargs=dict(
inputs=input_ids, streamer=streamer,
generation_config=generation_config,
)).start()
return streamer
else:
outputs = self.generate(input_ids, generation_config=generation_config)
response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
return response