Skip to content

Latest commit

 

History

History
39 lines (27 loc) · 3.15 KB

README.md

File metadata and controls

39 lines (27 loc) · 3.15 KB

ESRGAN (ECCVW'2018)

ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks

Abstract

The Super-Resolution Generative Adversarial Network (SRGAN) is a seminal work that is capable of generating realistic textures during single image super-resolution. However, the hallucinated details are often accompanied with unpleasant artifacts. To further enhance the visual quality, we thoroughly study three key components of SRGAN - network architecture, adversarial loss and perceptual loss, and improve each of them to derive an Enhanced SRGAN (ESRGAN). In particular, we introduce the Residual-in-Residual Dense Block (RRDB) without batch normalization as the basic network building unit. Moreover, we borrow the idea from relativistic GAN to let the discriminator predict relative realness instead of the absolute value. Finally, we improve the perceptual loss by using the features before activation, which could provide stronger supervision for brightness consistency and texture recovery. Benefiting from these improvements, the proposed ESRGAN achieves consistently better visual quality with more realistic and natural textures than SRGAN and won the first place in the PIRM2018-SR Challenge.

Results and models

Evaluated on RGB channels, scale pixels in each border are cropped before evaluation. The metrics are PSNR / SSIM .

Method Set5 Set14 DIV2K Download
esrgan_psnr_x4c64b23g32_1x16_1000k_div2k 30.6428 / 0.8559 27.0543 / 0.7447 29.3354 / 0.8263 model | log
esrgan_x4c64b23g32_1x16_400k_div2k 28.2700 / 0.7778 24.6328 / 0.6491 26.6531 / 0.7340 model | log

Citation

@inproceedings{wang2018esrgan,
  title={Esrgan: Enhanced super-resolution generative adversarial networks},
  author={Wang, Xintao and Yu, Ke and Wu, Shixiang and Gu, Jinjin and Liu, Yihao and Dong, Chao and Qiao, Yu and Change Loy, Chen},
  booktitle={Proceedings of the European Conference on Computer Vision Workshops(ECCVW)},
  pages={0--0},
  year={2018}
}