PyDicer: PYthon Dicom Image ConvertER#

+SoftwareX

Welcome to PyDicer, a tool to ease the process of converting Radiotherapy DICOM data objects into a format typically used for research purposes. In addition to data conversion, functionality is provided to help analyse the data. This includes computing radiomic features, radiotherapy dose metrics and auto-segmentation metrics. PyDicer uses the NIfTI format to store data is a well defined file system structure. Tracking of these data objects in CSV files, also stored on the file system, provides an easy and flexible way to work with the converted data in your research.

The PyDicer documentation provides several examples and guides to help you get started with the tool. Here are a few PyDicer principles to keep in mind as you get started:

+PyDicer Working Directory structure +

PyDicer working directory structure (`Chlap, P. et al. SoftwareX <https://doi.org/10.1016/j.softx.2024.102010>`_)

Pipeline#

@@ -304,6 +307,11 @@

Getting Started +

How to Cite#

+

If you make use of PyDicer within your research work, please consider citing our SoftwareX paper:

+

**Chlap P, Al Mouiee D, Finnegan RN, et al. PyDicer: An open-source python library for conversion and analysis of radiotherapy DICOM data. SoftwareX. 2025;29:102010. doi:10.1016/j.softx.2024.102010**

+

Contributing#

PyDicer is an open-source tool and contributions are welcome! Here are some ways you might consider contributing to the project:

@@ -384,6 +392,7 @@

AuthorsDirectory Structure
  • Pipeline
  • Getting Started
  • +
  • How to Cite
  • Contributing
  • Authors
    diff --git a/objects.inv b/objects.inv index 0b1c9de..7159f75 100644 Binary files a/objects.inv and b/objects.inv differ diff --git a/searchindex.js b/searchindex.js index a8c2da2..a4f8b03 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["_examples/AutoSegmentation", "_examples/Configuration", "_examples/ConvertingData", "_examples/DatasetPreparation", "_examples/DoseMetrics", "_examples/GettingStarted", "_examples/ObjectGeneration", "_examples/Radiomics", "_examples/VisualiseData", "_examples/WorkingWithData", "_examples/WorkingWithStructures", "_examples/nnUNet", "analyse", "code_of_conduct", "config", "contributing", "convert", "dataset", "generate", "index", "input", "nnunet", "preprocess", "tool", "utils", "visualise"], "filenames": ["_examples/AutoSegmentation.ipynb", "_examples/Configuration.ipynb", "_examples/ConvertingData.ipynb", "_examples/DatasetPreparation.ipynb", "_examples/DoseMetrics.ipynb", "_examples/GettingStarted.ipynb", "_examples/ObjectGeneration.ipynb", "_examples/Radiomics.ipynb", "_examples/VisualiseData.ipynb", "_examples/WorkingWithData.ipynb", "_examples/WorkingWithStructures.ipynb", "_examples/nnUNet.ipynb", "analyse.rst", "code_of_conduct.rst", "config.rst", "contributing.rst", "convert.rst", "dataset.rst", "generate.rst", "index.rst", "input.rst", "nnunet.rst", "preprocess.rst", "tool.rst", "utils.rst", "visualise.rst"], "titles": ["Auto-segmentation Inference & Analysis", "Configuration", "Converting Data", "Dataset Preparation", "Dose Metrics", "Getting Started", "Generating Data Objects", "Compute Radiomics", "Visualise Data", "Working with Data", "Working with Structures", "nnUNet Data Preparation", "Analyse", "Code of Conduct", "Configuration", "Contributing", "Conversion", "Dataset Preparation", "Generation", "PyDicer: PYthon Dicom Image ConvertER", "Input", "nnUNet", "Preprocessing", "PyDicer", "Utils", "Visualisation"], "terms": {"A": [0, 1, 2, 3, 5, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25], "common": [0, 5, 10, 12, 13, 19], "task": [0, 3, 6, 11, 19], "when": [0, 1, 3, 6, 7, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25], "work": [0, 2, 3, 4, 6, 7, 8, 11, 12, 14, 16, 17, 18, 19, 22, 24, 25], "medic": [0, 9, 19], "imag": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 16, 17, 18, 21, 22, 23, 24], "data": [0, 1, 10, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25], "an": [0, 1, 3, 6, 9, 11, 13, 16, 17, 18, 19, 21, 22, 23, 24], "model": [0, 3, 9, 11, 21], "your": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 15, 19], "dataset": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 18, 19, 20, 21, 23, 24, 25], "If": [0, 1, 2, 3, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 21, 23, 24], "you": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 21, 23], "have": [0, 2, 3, 6, 7, 10, 11, 12, 13, 17, 18, 21, 23], "manual": 0, "definit": 0, "same": [0, 1, 2, 11, 12, 21], "structur": [0, 1, 2, 4, 5, 7, 8, 9, 12, 18, 21, 22, 23, 24], "avail": [0, 2, 3, 7, 10, 13, 15, 17, 18, 21, 23, 24], "typic": [0, 3, 19], "want": [0, 2, 3, 5, 6, 8, 9, 10, 21], "compar": [0, 12, 16], "produc": [0, 6, 8, 16, 19], "plot": [0, 4, 12, 19], "visualis": [0, 5, 6, 19, 23], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24], "exampl": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 23, 24], "notebook": [0, 4, 5, 7, 11], "guid": [0, 6, 10, 15, 19], "through": [0, 9, 11, 13, 17, 18, 21], "process": [0, 1, 2, 12, 19, 21, 23, 24], "those": [0, 4, 6, 7, 10, 13], "we": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24], "singl": [0, 13, 20], "base": [0, 3, 11, 17, 20, 24], "demonstr": [0, 2, 4, 5, 6, 7, 9, 10, 11, 13], "purpos": [0, 3, 4, 6, 7, 9, 10, 11, 19], "warn": [0, 1, 2, 6, 7, 8, 10, 11, 23], "The": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "result": [0, 5, 7, 12, 16, 18, 23], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 21, 23, 24, 25], "poor": 0, "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24], "optimis": 0, "runtim": 0, "pure": 0, "provid": [0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 23, 24, 25], "how": [0, 2, 3, 5, 6, 10, 11], "analys": [0, 2, 3, 4, 7, 10, 19, 21, 23], "1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 21], "try": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "from": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 19, 23], "except": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 23], "importerror": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18], "pip": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19], "instal": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 18], "o": [0, 11], "pathlib": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 19, 22, 23, 24, 25], "path": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "simpleitk": [0, 2, 6, 9, 10, 16, 18, 19, 23, 24], "sitk": [0, 6, 10, 16, 18, 21, 23], "platipi": [0, 19], "registr": 0, "util": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 21], "apply_transform": 0, "linear": 0, "linear_registr": 0, "deform": 0, "fast_symmetric_forces_demons_registr": 0, "fetch_converted_test_data": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 24], "gener": [0, 3, 9, 11, 12, 17, 19, 21, 23, 25], "segment_imag": [0, 18, 23], "read_all_segmentation_log": [0, 18, 23], "compute_contour_similarity_metr": [0, 12], "get_all_similarity_metrics_for_dataset": [0, 12], "prepare_similarity_metric_analysi": [0, 12], "For": [0, 3, 4, 5, 11, 13, 15, 18, 19, 23], "lctsc": [0, 1, 7, 9, 10, 11, 24], "test": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20, 21, 24], "which": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24], "ha": [0, 3, 4, 6, 7, 8, 9, 10, 11, 18, 21, 23, 24], "alreadi": [0, 4, 6, 7, 9, 10, 11, 12, 16, 18, 22, 23, 24, 25], "been": [0, 2, 3, 4, 7, 9, 10, 11, 12, 17, 18, 21, 23, 24], "convert": [0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 16, 17, 18, 20, 23, 24, 25], "also": [0, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19, 21, 23, 24], "initialis": [0, 8, 9, 10], "our": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11], "object": [0, 1, 2, 3, 8, 10, 12, 14, 16, 17, 19, 22, 23, 24, 25], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "working_directori": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "lctsc_autoseg": 0, "sinc": [0, 3, 18, 19, 21, 23], "must": [0, 2, 4, 11, 12, 15, 18, 23, 24], "split": [0, 21], "select": [0, 3, 12, 17, 19], "one": [0, 2, 3, 5, 10, 11, 16, 17, 18, 23], "case": [0, 1, 3, 11, 21], "remain": [0, 3], "valid": [0, 1, 3], "set": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24], "modul": [0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 18, 19], "creat": [0, 2, 3, 10, 11, 15, 19, 21], "subset": [0, 3, 7, 11, 17, 21], "3": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19], "df": [0, 2, 3, 6, 9, 10, 11, 12, 17], "read_converted_data": [0, 2, 3, 6, 9, 10, 11, 23, 24], "specifi": [0, 3, 4, 9, 10, 11, 13, 14, 17, 21, 23, 24], "patient": [0, 2, 3, 4, 5, 7, 9, 10, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25], "id": [0, 2, 6, 7, 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 23, 24, 25], "atlas_dataset": 0, "atlas_cas": 0, "train": [0, 3, 9, 10, 21], "s1": [0, 7, 9, 10, 11], "001": [0, 9, 10, 11], "df_atla": 0, "patient_id": [0, 2, 3, 6, 9, 10, 11, 18, 20, 22, 23, 24], "And": [0, 6], "make": [0, 13, 15], "up": [0, 1, 5, 9, 17], "validation_dataset": 0, "df_valid": 0, "two": [0, 1, 3, 11, 16], "prepare_from_datafram": [0, 3, 17], "now": [0, 2, 3, 6, 10, 11], "readi": [0, 2, 3, 11, 17, 19, 21], "simpl": 0, "u": [0, 9, 13], "tool": [0, 1, 3, 11, 15, 19, 23], "In": [0, 2, 3, 4, 6, 7, 9, 10, 11, 19], "real": [0, 3, 10, 22], "world": [0, 3, 10, 22], "scenario": [0, 3, 21], "own": [0, 3], "wish": [0, 12], "appli": [0, 3, 6, 9, 10, 13], "should": [0, 10, 11, 12, 15, 17, 18, 21, 23], "integr": [0, 6], "accept": [0, 3, 13, 18, 23], "return": [0, 3, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24], "dictionari": [0, 10, 12, 16, 18, 23, 24], "To": [0, 3, 9, 15], "get": [0, 2, 9, 14, 16, 17, 18, 24], "start": [0, 2, 3, 9, 18, 21], "recommend": [0, 6, 9, 21], "totalsegment": [0, 18, 23], "ct": [0, 2, 3, 6, 9, 11, 18, 19, 21, 23], "check": [0, 2, 5, 6, 9, 10, 15, 18, 19, 21, 23], "out": [0, 1, 3, 5, 6, 9, 10, 11, 21, 23], "run_total_segment": [0, 18, 23], "4": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "def": [0, 3, 18, 23, 24], "single_atlas_segment": 0, "img": [0, 6, 7, 9, 18, 23], "arg": [0, 23, 24], "dict": [0, 7, 12, 16, 17, 18, 22, 23, 24], "load": [0, 1, 4, 6, 12, 18, 23, 24], "atlas_img_row": 0, "modal": [0, 2, 3, 6, 9, 10, 11, 16, 18, 20, 21, 22, 23], "iloc": [0, 3, 6, 9, 10], "0": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 18, 23], "atlas_img": 0, "readimag": [0, 6, 18, 23], "str": [0, 6, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25], "joinpath": [0, 2, 5, 6, 18, 19, 23], "nii": [0, 6, 18, 23], "gz": [0, 6, 18, 23], "atlas_structur": 0, "atlas_struct_row": 0, "rtstruct": [0, 1, 2, 3, 4, 6, 9, 10, 11, 19, 22], "struct_path": 0, "glob": [0, 18, 23], "struct_nam": [0, 24], "name": [0, 3, 5, 8, 9, 12, 14, 17, 18, 19, 23, 24, 25], "replac": [0, 12, 18, 23], "rigid": 0, "align": [0, 13], "input": [0, 2, 3, 5, 18, 19, 22, 23], "img_ct_atlas_reg_linear": 0, "tfm_linear": 0, "fixed_imag": 0, "moving_imag": 0, "reg_method": 0, "mean_squar": 0, "gradient_desc": 0, "shrink_factor": 0, "smooth_sigma": 0, "sampling_r": 0, "number_of_iter": 0, "50": [0, 4, 5, 7, 9, 12, 23], "fast": [0, 8], "img_ct_atlas_reg_dir": 0, "tfm_dir": 0, "dvf": 0, "ncore": 0, "isotropic_resampl": 0, "true": [0, 1, 12, 16, 18, 19, 21, 22, 23, 24, 25], "resolution_stag": 0, "iteration_stag": 0, "20": [0, 5, 6, 8, 18, 23], "combin": 0, "transform": 0, "tfm_combin": 0, "compositetransform": 0, "auto_segment": 0, "": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24], "reference_imag": 0, "segment_dataset": [0, 18, 23], "over": [0, 2, 5, 6, 10, 24], "all": [0, 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "pass": [0, 2, 7, 9, 11, 12, 17, 21], "so": [0, 2, 3, 7, 9, 11, 19, 21], "onli": [0, 1, 3, 5, 6, 7, 8, 10, 11, 12, 17, 19, 21, 22, 23, 24], "5": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "segment_id": [0, 12, 18, 23], "dataset_nam": [0, 3, 5, 11, 12, 17, 18, 19, 21, 23, 24, 25], "100": [0, 2, 4, 5, 6, 7, 8, 9, 16], "9": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19], "00": [0, 2, 4, 5, 6, 8], "59": [0, 5], "lt": [0, 2, 4, 5, 6, 8], "6": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24], "65": [0, 5], "can": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 18, 21, 23], "snapshot": [0, 6, 25], "forc": [0, 6, 8, 12, 16, 18, 22, 23, 25], "fals": [0, 1, 3, 6, 8, 11, 12, 16, 18, 21, 23, 24], "29": [0, 2, 4, 5, 8], "09": [0, 2, 5, 7], "19object": 0, "after": [0, 3, 5, 8, 11, 21, 23], "across": [0, 4, 18, 23], "confirm": [0, 3, 10, 11], "everyth": [0, 11], "went": 0, "well": [0, 3, 5, 7, 13, 19, 24], "let": [0, 3, 6, 11], "inspect": [0, 7, 8, 12, 19], "someth": 0, "wrong": [0, 2, 8, 14, 18, 23], "help": [0, 3, 6, 9, 11, 19], "debug": [0, 1, 7, 10, 23], "issu": [0, 2, 10, 13, 19], "7": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "datafram": [0, 4, 5, 7, 9, 11, 12, 16, 17, 18, 19, 21, 22, 23, 24], "df_log": 0, "img_id": [0, 6], "start_tim": [0, 18], "end_tim": [0, 18], "total_time_second": 0, "success_flag": 0, "error": [0, 1, 2, 16, 18, 19, 23, 24], "007": [0, 9, 10, 11], "5adf40": [0, 7, 9, 11], "2024": [0, 2], "12": [0, 2, 3, 5, 6, 7, 9, 11], "03": [0, 2, 3, 5, 8], "21": [0, 2, 5, 6, 8], "56": [0, 4, 5], "615048": 0, "22": [0, 4, 5, 8], "235503": 0, "620455": 0, "nan": [0, 2, 3, 5, 7, 9, 11], "006": [0, 9, 10, 11], "88c5ef": [0, 7, 9, 11], "258637": 0, "892234": 0, "633597": 0, "102": [0, 9, 10, 11], "914d57": [0, 7, 9, 11], "913808": 0, "16": [0, 2, 3, 5, 6, 8, 9, 11], "799333": 0, "885525": 0, "002": [0, 9, 10, 11], "aa38e6": [0, 7, 9, 11], "823850": 0, "24": [0, 2, 4, 5, 6, 7, 8], "087699": 0, "263849": 0, "008": [0, 9, 10, 11], "dd0026": [0, 7, 9, 11], "109354": 0, "30": [0, 5, 6, 8, 23], "347934": 0, "238580": 0, "004": [0, 9, 10, 11], "d91c84": [0, 7, 9, 11], "371854": 0, "37": [0, 5], "337994": 0, "966140": 0, "005": [0, 9, 10, 11], "738c1a": [0, 7, 9, 11], "359917": 0, "43": [0, 4, 5], "316022": 0, "956105": 0, "101": [0, 7, 9, 10, 11], "666be6": [0, 7, 9, 11], "339394": 0, "49": [0, 5, 7], "597299": 0, "257905": 0, "8": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 19], "003": [0, 9, 10, 11], "2bf2f9": [0, 7, 9, 11], "620278": 0, "464095": 0, "843817": 0, "some": [0, 3, 6, 7, 8, 9, 10, 11, 15, 19, 21, 24], "panda": [0, 2, 3, 4, 5, 7, 9, 17, 18, 19, 23], "magic": 0, "stat": 0, "df_success": 0, "agg_stat": 0, "mean": [0, 4, 5, 7, 9], "std": [0, 23], "max": 0, "min": 0, "count": 0, "groupbi": [0, 3], "agg": 0, "629553": 0, "414075": 0, "first": [0, 1, 2, 3, 5, 7, 10, 12, 23, 24], "contain": [0, 2, 3, 4, 7, 12, 16, 17, 18, 21, 22, 23, 24], "df_target": [0, 12], "separ": [0, 10], "df_refer": [0, 12], "df_struct": [0, 10], "hashed_uid": [0, 2, 3, 6, 8, 9, 11, 18, 23], "startswith": 0, "f": [0, 1, 6, 7, 9, 10, 11], "atlas_": 0, "10": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 19, 23], "sop_instance_uid": [0, 2, 3, 6, 9, 11, 22], "series_uid": [0, 2, 3, 6, 9, 11, 22], "for_uid": [0, 2, 3, 6, 9, 11, 16, 18, 22, 23], "referenced_sop_instance_uid": [0, 2, 3, 6, 9, 11, 12, 18, 23], "14519": [0, 2, 3, 6, 9, 11], "7014": [0, 9, 11], "4598": [0, 9, 11], "284338872489": [0, 9, 11], "ed6686": [0, 7, 9, 11], "187709044743": [0, 9, 11], "168227681755": [0, 9, 11], "161109536301": [0, 9, 11], "ceb111": [0, 7, 9, 11], "325217978839": [0, 9, 11], "263565217029": [0, 9, 11], "110977663386": [0, 9, 11], "6c6ea4": [0, 7, 9, 11], "408067568497": [0, 9, 11], "235489581364": [0, 9, 11], "291449913947": [0, 9, 11], "f036b8": [0, 7, 9, 10, 11], "145984743865": [0, 9, 11], "318848546630": [0, 9, 11], "13": [0, 2, 3, 5, 6, 9, 11], "225487254421": [0, 9, 11], "48a970": [0, 7, 9, 11], "243364093992": [0, 9, 11], "217118546740": [0, 9, 11], "595315284787": [0, 9, 11], "61758b": [0, 7, 9, 11], "313160975008": [0, 9, 11], "141349678572": [0, 9, 11], "19": [0, 5, 6, 7, 9, 11], "214803404117": [0, 9, 11], "68d663": [0, 7, 9, 11], "964812114328": [0, 9, 11], "140943693489": [0, 9, 11], "929007819506": [0, 9, 11], "cc682f": [0, 7, 9, 11], "280355341349": [0, 9, 11], "171234424242": [0, 9, 11], "333558838494": [0, 9, 11], "25": [0, 2, 4, 5, 6], "127494043495": [0, 9, 11], "8e34f9": [0, 7, 9, 11], "803594135292": [0, 9, 11], "159497309342": [0, 9, 11], "11": [0, 2, 3, 4, 5, 6, 9, 11], "atlas_5adf40": 0, "atlas_88c5ef": 0, "atlas_914d57": 0, "atlas_aa38e6": 0, "14": [0, 2, 3, 5, 6, 7, 9, 11], "atlas_dd0026": 0, "17": [0, 2, 3, 5, 8, 9, 11], "atlas_d91c84": 0, "atlas_738c1a": 0, "23": [0, 5, 7, 8], "atlas_666be6": 0, "26": [0, 2, 5, 7], "atlas_2bf2f9": 0, "target": [0, 12, 19], "refer": [0, 2, 3, 8, 9, 10, 12, 16, 18, 23, 24], "dice": 0, "coeffici": 0, "dsc": [0, 12], "hausdorff": 0, "distanc": [0, 9], "surfac": 0, "match": [0, 3, 12, 17, 18, 20, 23], "exactli": [0, 5, 11, 21], "map": [0, 7, 11, 12, 17, 21, 23, 24], "standardis": [0, 10, 17, 19, 23, 24], "prior": [0, 10, 12, 21], "add": [0, 2, 5, 9, 11, 15, 16, 17, 18, 19, 21, 23], "mapping_id": [0, 10, 11, 12, 17, 21, 23, 24], "nnunet_lctsc": [0, 11], "esophagu": [0, 7, 10, 11], "heart": [0, 7, 10, 11], "lung_l": [0, 7, 10, 11], "l_lung": [0, 7, 10, 11], "lung_left": [0, 7, 10, 11], "lung_r": [0, 7, 10, 11], "lung_right": [0, 7, 10, 11], "spinalcord": [0, 7, 10, 11], "sc": [0, 7, 10, 11], "add_structure_name_map": [0, 10, 11, 23, 24], "compute_metr": [0, 12], "hausdorffdist": [0, 12], "meansurfacedist": [0, 12], "surfacedsc": [0, 12], "36": [0, 5], "here": [0, 2, 3, 4, 5, 9, 10, 11, 15, 19], "output": [0, 1, 2, 3, 5, 7, 10, 11, 12, 16, 18, 19, 23, 24, 25], "note": [0, 3, 5, 6, 11, 21], "fail": 0, "exclud": [0, 12], "df_metric": 0, "structure_mapping_id": [0, 12], "aggreg": 0, "valu": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 23, 24], "023485": 0, "039155": 0, "000000": [0, 4], "109864": 0, "86": 0, "016542": 0, "31": [0, 2, 5], "242434": 0, "51": [0, 5], "074932": 0, "138": 0, "589307": 0, "829617": 0, "069703": 0, "329453": 0, "88": [0, 5], "431997": 0, "044144": 0, "076819": 0, "222843": 0, "245349": 0, "213440": 0, "485516": 0, "81": 0, "796660": 0, "28": [0, 3, 4, 5], "022026": 0, "45": [0, 4, 5], "554259": 0, "127": [0, 5, 7], "344050": 0, "34": [0, 5, 7], "477665": 0, "412489": 0, "660061": 0, "71": [0, 4, 5], "395360": 0, "136241": 0, "112819": 0, "297727": 0, "345206": 0, "227535": 0, "042621": 0, "665717": 0, "107": 0, "038653": 0, "328493": 0, "67": [0, 5, 7, 8], "318771": 0, "166": 0, "238581": 0, "33": [0, 5, 6, 7], "207495": 0, "589999": 0, "15": [0, 2, 3, 5, 6, 7, 9, 11], "643577": 0, "64": [0, 5], "321409": 0, "261660": 0, "173089": 0, "034036": 0, "567455": 0, "435620": 0, "211995": 0, "120374": 0, "654082": 0, "93": [0, 5], "095879": 0, "999991": 0, "58": [0, 5], "515670": 0, "158": 0, "412996": 0, "27": [0, 5, 6, 7], "582301": 0, "213033": 0, "244833": 0, "727983": 0, "302265": 0, "149149": 0, "084824": 0, "468548": 0, "059047": 0, "133917": 0, "398152": 0, "062020": 0, "777640": 0, "512324": 0, "153": 0, "971275": 0, "480604": 0, "35": [0, 5, 8], "360977": 0, "644323": 0, "122": 0, "360613": 0, "086375": 0, "184924": 0, "543595": 0, "There": [0, 9], "variou": [0, 1, 7, 19, 23, 24, 25], "mai": [0, 1, 2, 3, 6, 7, 10, 11, 13, 15, 17], "follow": [0, 2, 3, 4, 6, 8, 10, 11, 13, 15, 19, 22], "sever": [0, 2, 3, 5, 9, 19], "serv": 0, "point": [0, 4, 12, 15, 23], "directori": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "tabl": [0, 9, 12], "csv": [0, 2, 3, 4, 5, 12, 19], "testdata_lctsc": [0, 1, 7, 9, 10, 11], "cell": [0, 2, 3, 4, 6, 7, 10, 11], "navig": [0, 3], "explor": 0, "analysis_output_directori": [0, 12], "mkdir": [0, 18, 19, 23], "parent": [0, 19], "exist_ok": [0, 19], "pydic": [1, 6, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25], "chang": [1, 5, 15, 23], "behaviour": 1, "get_config": [1, 14], "set_config": [1, 14], "function": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 18, 19, 20, 21, 22, 23, 24], "config": [1, 14, 18, 23], "respect": [1, 4, 13], "logging_verbos": 1, "print": [1, 6, 9, 10, 11], "current": [1, 9, 11, 19, 21], "level": [1, 10, 13, 17, 23, 24], "new": [1, 6, 8, 15, 18, 23], "standard": [1, 2, 9, 18, 20, 23, 24], "indic": [1, 9, 11, 18, 21, 23], "python": [1, 10, 15, 18, 21, 23], "built": [1, 3], "displai": [1, 3, 5, 7, 23, 24], "bar": [1, 23, 24], "notset": [1, 11], "info": [1, 7, 10, 11, 23], "determin": [1, 3, 10, 11, 13, 18, 21, 24], "whether": [1, 16], "link": [1, 3, 4, 5, 7, 8, 12, 16, 17, 18, 19, 23, 24], "via": [1, 11, 13, 15], "uid": [1, 8, 9, 16, 18, 23, 24], "more": [1, 2, 3, 5, 6, 8, 9, 11, 12, 15, 16, 18, 19, 21], "stabl": 1, "exist": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 21, 23, 24, 25], "for_fallback_linkag": 1, "preprocess": [1, 5, 16, 19, 23, 24], "otherwis": [1, 3, 13, 17, 22, 23, 24], "ani": [1, 7, 8, 11, 13, 15, 17, 19, 21], "dicom": [1, 2, 3, 5, 6, 7, 9, 10, 12, 16, 17, 18, 20, 22, 23, 24], "enforce_dcm_ext": 1, "detect": [1, 2, 11, 21], "sent": 1, "quarantin": [1, 5, 19, 23], "interp_missing_slic": 1, "locat": [1, 2, 5, 9, 19, 22, 23, 24], "differ": [1, 2, 5, 6, 10, 11, 13, 21], "pixel": [1, 2, 9, 16], "found": [1, 3, 4, 7, 10, 11, 12, 17, 18, 23, 24], "ignore_duplicate_slic": 1, "rais": [1, 12, 14, 16, 17, 18, 21, 23, 24], "addit": [1, 3, 4, 11, 17, 19], "allow": [1, 13, 21], "easili": [1, 5, 9, 15], "3d": 1, "slicer": 1, "take": [1, 2, 3, 6, 11, 13, 15], "disk": 1, "space": [1, 9, 13, 16], "time": [1, 5, 8, 9, 13, 16, 18, 21, 24], "generate_nrrd": 1, "defin": [1, 2, 9, 10, 12, 17, 18, 19, 21, 23], "matplotlib": [1, 16], "save": [1, 3, 6, 10, 12, 14, 16, 18, 23], "nrrd_colormap": 1, "rainbow": [1, 16], "convers": [2, 5, 8, 19, 23], "These": [2, 3, 9], "essenti": 2, "step": [2, 5, 7, 19, 23], "befor": [2, 4, 11, 15, 21], "testinput": [2, 5, 19, 20], "As": [2, 3, 9], "class": [2, 5, 7, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25], "download": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 24], "sampl": [2, 5, 9], "other": [2, 3, 5, 13, 23, 24], "d": [2, 3, 4, 5, 9, 12, 13, 17, 19, 24], "like": [2, 3, 5, 7, 9, 13, 15, 17, 18, 23], "retriev": [2, 5], "somewher": [2, 5], "els": [2, 5], "see": [2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 18, 19, 21], "doc": [2, 5, 15, 24], "inform": [2, 3, 5, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22], "most": 2, "commonli": 2, "file": [2, 3, 4, 5, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25], "store": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18, 19, 23, 24], "within": [2, 8, 9, 10, 12, 13, 15, 18, 19, 21, 23], "folder": [2, 3, 5, 6, 11, 17, 18, 21, 23, 24], "system": [2, 3, 4, 5, 9, 11, 18, 19, 21, 23], "simpli": [2, 3, 8, 9, 10], "add_input": [2, 5, 19, 23], "dicom_directori": [2, 5, 19], "test_input": [2, 5, 19], "fetch_data": [2, 5, 19, 20], "With": [2, 10], "crawl": 2, "index": 2, "requir": [2, 5, 9, 10, 11, 15, 18, 23, 24], "1309": [2, 5], "411": [2, 5], "85file": 2, "wa": [2, 3, 11, 13, 16, 17, 18, 19, 22, 23, 24], "dure": [2, 8, 13], "row": [2, 3, 4, 5, 7, 9, 10, 12, 17, 18, 22, 23, 24], "df_preprocess": [2, 16], "read_preprocessed_data": [2, 23, 24], "head": [2, 4, 7, 15], "study_uid": [2, 22], "sop_class_uid": [2, 16, 22], "file_path": [2, 16, 22], "slice_loc": [2, 16, 22], "referenced_uid": [2, 22], "referenced_for_uid": [2, 22], "1185": 2, "hnscc": [2, 3, 4, 5, 6, 8, 24], "01": [2, 3, 4, 5, 6, 8], "0019": [2, 3, 4, 5, 6], "1706": [2, 3, 6], "8040": [2, 3, 6], "797724702538": 2, "233510441938": [2, 3], "840": 2, "10008": 2, "418136430763": [2, 3, 6], "290727775603": [2, 3, 6], "07": [2, 3, 4, 5, 7, 8], "04": [2, 7, 8], "1998": [2, 3], "n": 2, "807": 2, "1242": 2, "206018114826": 2, "804": 2, "1186": 2, "100785615013": 2, "801": 2, "1209": 2, "113351005230": 2, "798": 2, "1230": 2, "112029189313": 2, "795": 2, "nifti": [2, 5, 16, 18, 19, 24], "format": [2, 3, 5, 8, 11, 12, 15, 16, 19], "run": [2, 3, 6, 11, 12, 15, 18, 19, 21, 23, 25], "begin": [2, 21], "while": [2, 6, 15], "look": [2, 6, 8, 11, 17], "insid": [2, 6], "being": [2, 8, 10, 11, 17, 18, 23], "notic": [2, 3, 10], "each": [2, 3, 4, 5, 6, 7, 9, 10, 12, 18, 21, 22, 23], "track": [2, 3, 18, 19, 23], "throughout": [2, 24], "52": [2, 5], "tmp": 2, "build": [2, 3, 23], "itk": 2, "prefix": [2, 16], "includ": [2, 3, 5, 12, 13, 15, 19, 23], "itkimageseriesread": 2, "hxx": 2, "line": [2, 15], "477": 2, "imageseriesread": 2, "0x55f7cadfe510": 2, "non": 2, "uniform": [2, 5, 7], "miss": [2, 11, 16, 21], "slice": [2, 9, 16, 22], "maximum": [2, 7], "nonuniform": 2, "000641026": 2, "53": [2, 5, 7], "02": [2, 3, 6, 8], "61": [2, 5], "66": [2, 4, 5], "onc": [2, 3, 6, 9, 10, 11, 15, 25], "descript": [2, 3, 5, 9, 17], "column": [2, 4, 5, 7, 9, 22], "charact": [2, 9, 24], "hexidecim": 2, "hash": [2, 8, 9, 24], "associ": [2, 3], "seriesinstanceuid": [2, 22], "identifi": 2, "consic": 2, "represent": [2, 9], "belong": [2, 23, 24], "where": [2, 3, 5, 6, 10, 11, 16, 19, 20, 23, 24], "240263316258": [2, 3, 6], "72b0f9": [2, 3], "0199": [2, 3, 6, 8], "261759476368": [2, 3], "870916135819": [2, 3, 6], "264264397186": [2, 3, 6], "c16e76": [2, 3, 6], "rtdose": [2, 3, 4, 6, 17, 19, 22, 24], "233527028792": [2, 3, 6], "287865632112": [2, 3, 6], "dose": [2, 5, 8, 10, 12, 17, 18, 19, 23, 24], "664e96": [2, 3], "rtplan": [2, 3, 18, 19, 22, 23], "137463901488": [2, 3], "166429645421": [2, 3, 6], "plan": [2, 3, 6, 17, 18, 23], "06e49c": [2, 3, 6], "243934637013": [2, 3, 6], "334001018535": [2, 3, 6], "c4ffd0": [2, 3], "0176": [2, 3, 6], "151938046710": [2, 3], "120880328745": [2, 3, 6], "107072817915": [2, 3, 6], "8e0da9": [2, 3], "176143398282": [2, 3], "216161306702": [2, 3, 6], "133948865586": [2, 3, 6], "ec4aec": [2, 3], "192899726585": [2, 3], "469610481459": [2, 3, 6], "33c44a": [2, 3], "244362210503": [2, 3], "310630617866": [2, 3, 6], "169033525924": [2, 3, 6], "833a74": [2, 3, 6], "279793773343": [2, 3, 6], "706719210726": [2, 3, 6], "470253980284": [2, 3, 6], "267291308489": [2, 3, 6], "bf3fba": [2, 3, 6], "283706688235": [2, 3, 6], "566662631858": [2, 3, 6], "173917268454": [2, 3, 6], "6f7db7": [2, 3], "120111576192": [2, 3], "323156708629": [2, 3, 6], "a6b346": [2, 3], "318927873561": [2, 3], "403955456521": [2, 3, 6], "cbbf5b": [2, 3, 6], "276897558084": [2, 3, 6], "6d2934": [2, 3, 6], "495627765798": [2, 3, 6], "b281ea": [2, 3, 5], "242809596262": [2, 3, 6], "309e1a": [2, 3, 4, 5, 6], "777975715563": [2, 3, 6], "254865609982": [2, 3, 6], "57b99f": [2, 3], "202542618630": [2, 3], "168221415040": [2, 3, 6], "7cdcd9": [2, 3, 4, 5, 6], "103450757970": [2, 3, 6], "anyth": 2, "goe": 2, "either": [2, 7, 21, 24], "problemat": 2, "copi": [2, 24], "It": [2, 19], "good": 2, "idea": [2, 15], "regularli": 2, "ensur": [2, 6, 8, 11, 15, 18, 23, 24], "critic": [2, 23], "consid": [2, 13, 17, 18, 19, 23], "rectifi": 2, "again": 2, "seen": 2, "below": [2, 3, 7], "were": [2, 3, 11, 13], "move": 2, "due": 2, "multipl": [2, 21], "seri": [2, 3, 7, 9, 13, 16, 17, 18, 23, 24], "df_quarantin": 2, "read_quarantined_data": [2, 23], "quarantine_dttm": 2, "patientid": [2, 22], "sopinstanceuid": [2, 22], "seriesdescript": [2, 3, 17], "05": [2, 7, 16], "2004": 2, "436232": 2, "258957568007": 2, "scout": 2, "neck": 2, "oral": 2, "naso": 2, "w": 2, "con": 2, "441420": 2, "181695106907": 2, "155": 2, "456592": 2, "308207714344": 2, "bone": [2, 6], "462247": 2, "189167578552": 2, "467385": 2, "146032766668": 2, "607": 2, "196911": 2, "190466192108": 2, "contrast120cc": 2, "3cc": 2, "90": 2, "delai": 2, "608": 2, "207200": 2, "209452648754": 2, "609": 2, "217527": 2, "174557835738": 2, "610": 2, "227860": 2, "113716820433": 2, "611": 2, "238142": 2, "141027169157": 2, "612": 2, "often": [3, 5, 10], "need": [3, 21], "tackl": 3, "clean": [3, 5, 9, 17, 19], "even": [3, 11, 12, 16, 18, 23, 25], "grid": [3, 6, 8, 11], "howev": [3, 11], "relev": [3, 11], "categori": 3, "solv": 3, "extract": [3, 4, 5, 7, 9, 12, 16, 18, 23, 24], "overal": [3, 13], "might": [3, 11, 12, 19, 21], "radiotherapi": [3, 19], "treatment": 3, "calcul": 3, "treat": 3, "auto": [3, 6, 8, 10, 19, 23], "segment": [3, 6, 8, 10, 11, 12, 19, 23], "off": [3, 6, 15], "specif": [3, 6, 7, 8, 10, 11, 17, 19, 23, 24], "latest": [3, 5, 12, 17], "perform": [3, 6, 9, 12, 19], "logic": 3, "pd": [3, 12, 16, 17, 18, 21, 22, 23, 24], "preprepar": 3, "testdata_hnscc": [3, 4, 6, 8], "default": [3, 5, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "entir": [3, 5, 10, 23], "what": [3, 5, 13, 15], "c": [3, 6, 9], "date": [3, 18, 24], "along": [3, 19, 24], "dose_project": 3, "rt_latest_dos": [3, 5, 17], "dose_project_nam": 3, "abov": [3, 6, 10, 11], "finish": [3, 11], "thing": 3, "part": [3, 9, 10, 19], "actual": 3, "symbol": [3, 19], "origin": [3, 6, 9, 17, 24], "isn": [3, 11], "t": [3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 21, 22, 23, 24], "duplic": [3, 16, 21], "easi": [3, 15, 19, 23], "support": [3, 6, 11, 15, 20, 21], "unix": 3, "linux": 3, "maco": 3, "oper": [3, 9], "won": [3, 4, 6, 7, 8, 9, 10, 11, 18, 21, 23], "window": [3, 9], "still": 3, "By": [3, 7], "suppli": [3, 10, 11, 12, 17, 19, 21, 23, 24], "obtain": [3, 9], "df_dose_project": 3, "e": [3, 4, 12, 13], "g": [3, 4, 12], "metric": [3, 5, 6, 10, 12, 19], "next": [3, 10], "studydescript": [3, 9], "metadata": [3, 24], "achiev": [3, 10], "rt_latest_struct": [3, 17], "observ": 3, "studi": [3, 9], "structure_project_nam": 3, "structure_project": 3, "series_descript": 3, "rt": [3, 8, 9], "simul": 3, "df_structure_project": 3, "filter": [3, 6, 9, 12, 17], "image_project": 3, "keep": [3, 7, 10, 19, 24], "read": [3, 6, 15, 18, 23, 24], "df_ct": [3, 6], "image_project_nam": 3, "df_image_project": 3, "complex": 3, "would": [3, 15, 20], "closest": 3, "prear": 3, "clinical_project": 3, "dummi": [3, 11], "clinic": 3, "tabular": 3, "df_clinic": 3, "stage": 3, "who": [3, 15], "nearest": 3, "rt_start_dat": 3, "2002": 3, "2009": 3, "datetim": [3, 18, 24], "to_datetim": 3, "y": [3, 16], "m": [3, 7, 9], "ll": [3, 5], "load_object_metadata": [3, 6, 7, 9, 24], "determine_dcm_datetim": [3, 9, 24], "extract_clinical_data": 3, "df_data": 3, "merg": [3, 15], "outer": 3, "aren": [3, 9, 10, 11, 18, 21, 23, 24], "obj_dat": 3, "lambda": [3, 9], "axi": [3, 9], "list": [3, 7, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "indici": 3, "keep_row": 3, "sort": [3, 13, 19], "descend": 3, "order": [3, 5, 7, 12, 23], "sort_valu": 3, "ascend": 3, "loop": [3, 9], "df_pat": 3, "df_dose": [3, 6], "skip": 3, "len": [3, 6, 24], "continu": [3, 6, 13, 15, 18, 23], "thei": [3, 10, 12, 13], "dose_row": [3, 6, 24], "df_linked_struct": 3, "get_structures_linked_to_dos": [3, 23, 24], "final": [3, 16, 17], "find": [3, 4, 6, 10, 16, 17, 18, 21, 23], "struct_row": [3, 10], "df_linked_imag": 3, "image_row": [3, 18, 23], "indci": 3, "append": 3, "loc": 3, "clinical_project_nam": 3, "df_clinical_project": 3, "volum": [4, 5, 12, 16, 18, 23, 24], "histogram": [4, 5, 12, 24], "cancer": [4, 7, 19], "archiv": [4, 7], "prepar": [4, 7, 8, 10, 12, 18, 19, 21, 23, 24], "areadi": [4, 6, 7, 8, 9, 10, 11], "39": [4, 5, 6, 7, 8, 9, 10, 11], "done": [4, 21], "compute_dvh": [4, 12], "png": [4, 5, 8, 12, 25], "raw": [4, 12, 16], "get_all_dvhs_for_dataset": [4, 12], "df_dvh": 4, "struct_hash": [4, 5, 11, 24], "dose_hash": [4, 5], "label": [4, 5, 21], "cc": [4, 5], "77": [4, 5, 8], "78": [4, 5], "4640": [4, 5], "553474": [4, 5], "679710": [4, 5], "837845": 4, "835239": 4, "83267": 4, "000028": 4, "000020": 4, "000009": 4, "000002": 4, "165262e": 4, "2689": [4, 5], "948082": [4, 5], "784290": [4, 5], "00000": 4, "000048": 4, "000035": 4, "000016": 4, "000004": 4, "063598e": 4, "06": [4, 5, 7, 8], "brain": [4, 5], "549": [4, 5], "576759": [4, 5], "043829": [4, 5], "000000e": 4, "brainstem": [4, 5], "47": [4, 5], "636032": [4, 5], "998913": [4, 5], "ctv63": [4, 5], "467": [4, 5], "602730": [4, 5], "274086": [4, 5], "000275": 4, "000202": 4, "000092": 4, "000024": 4, "118491e": 4, "788": 4, "compute_dose_metr": [4, 5, 12], "v": [4, 12], "dcc": [4, 12], "d95": [4, 5, 12], "d50": [4, 5, 12], "v5": [4, 12], "dcc10": [4, 12], "df_dose_metr": [4, 5], "d_point": [4, 5, 12], "95": [4, 5, 6, 12], "v_point": [4, 5, 12], "d_cc_point": [4, 12], "d10cc": 4, "030835": [4, 5], "358893": [4, 5], "3558": 4, "228493": 4, "75": [4, 5], "501190": 4, "384142": [4, 5], "358867": [4, 5], "2668": 4, "971062": 4, "657684": [4, 5], "339093": [4, 5], "544": 4, "220924": 4, "311918": 4, "935185": [4, 5], "202222": [4, 5], "46": [4, 5, 6, 9], "232806": 4, "177108": [4, 5], "589748": [4, 5], "494366": 4, "basic": [5, 9], "project": [5, 10, 11, 12, 14, 15, 18, 19, 23, 24], "functionl": 5, "handl": [5, 11, 16, 19], "corrupt": 5, "place": [5, 15, 16, 19, 21, 24], "alongsid": [5, 6, 7], "comput": [5, 6, 10, 12, 16, 19, 23, 25], "radiom": [5, 10, 12, 19, 23], "featur": [5, 7, 8, 10, 12, 19], "quit": 5, "consum": 5, "depend": [5, 15, 18, 23], "portion": 5, "finer": 5, "control": 5, "reason": [5, 13], "run_pipelin": [5, 19, 23], "39file": 5, "79": 5, "dvh": [5, 6, 12, 23, 24, 25], "bit": [5, 9], "messi": 5, "somewhat": 5, "approach": 5, "detail": [5, 9, 11], "preparation_funct": [5, 17], "analysi": [5, 12, 19], "further": [5, 12, 15, 18, 19, 21, 23], "df_radiom": [5, 7], "get_all_computed_radiomics_for_dataset": [5, 7, 12], "contour": [5, 7], "imagehasheduid": [5, 7], "structhasheduid": [5, 7], "resampledpixelspac": [5, 7], "normalisationscal": [5, 7], "firstord": [5, 7], "10percentil": [5, 7], "90percentil": [5, 7], "energi": [5, 7], "entropi": [5, 7], "median": [5, 7], "minimum": [5, 7], "rang": [5, 7], "robustmeanabsolutedevi": [5, 7], "rootmeansquar": [5, 7], "skew": [5, 7], "totalenergi": [5, 7], "varianc": [5, 7], "999": 5, "339": 5, "178130e": 5, "785593": 5, "630179": 5, "18": [5, 6, 7, 9, 11], "1024": [5, 9], "4000": 5, "276": 5, "691595": 5, "565": 5, "017962": 5, "216289": 5, "481475e": 5, "076182": 5, "302955": 5, "835075": 5, "68": [5, 7], "669": 5, "587794e": 5, "415742": 5, "142": 5, "809678": 5, "41": 5, "747524": 5, "410": 5, "946993": 5, "886750": 5, "542715e": 5, "111299": 5, "148482": 5, "826970": 5, "70": [5, 6, 7, 8], "420357e": 5, "08": [5, 7], "698910": 5, "375629": 5, "40": [5, 8, 9, 23], "849": 5, "2151": 5, "055957": 5, "57": 5, "813075": 5, "351606": 5, "836879e": 5, "427362": 5, "1283": 5, "403884": 5, "860914e": 5, "275139": 5, "442222": 5, "581": 5, "063362": 5, "431514": 5, "682653": 5, "324118e": 5, "491624": 5, "190": [5, 7], "937232": 5, "308": 5, "346678e": 5, "124500": 5, "805603": 5, "1014": 5, "3990": 5, "643247": 5, "287": 5, "047711": 5, "524907": 5, "852878e": 5, "125626": 5, "78938": 5, "289561": 5, "ctv63_sep": 5, "409": 5, "498": 5, "517524e": 5, "069875": 5, "578143": 5, "32": [5, 7], "89": 5, "611043": 5, "407": 5, "993479": 5, "163450": 5, "436883e": 5, "061470": 5, "165046": 5, "562407": 5, "ctv70": 5, "209": 5, "101866e": 5, "585289": 5, "69": 5, "823863": 5, "38": [5, 7], "997": 5, "2572": 5, "191215": 5, "211": 5, "758612": 5, "987960": 5, "459655e": 5, "164658": 5, "39966": 5, "337967": 5, "cord": 5, "85": 5, "136484e": 5, "646141": 5, "48": 5, "951795": 5, "296": 5, "1058": 5, "980855": 5, "085212": 5, "263382": 5, "469560e": 5, "233730": 5, "2656": 5, "829157": 5, "cord_expand": 5, "754": 5, "387667e": 5, "928948": 5, "231702": 5, "123": [5, 11], "3272": 5, "177": 5, "244691": 5, "417": 5, "346112": 5, "615239": 5, "541424e": 5, "061246": 5, "97873": 5, "824272": 5, "extern": [5, 13], "582": 5, "663208e": 5, "426843": 5, "121": 5, "129199": 5, "62": 5, "170197": 5, "389": 5, "791941": 5, "028668": 5, "758476e": 5, "104930": 5, "137265": 5, "474901": 5, "gtv1": 5, "553947e": 5, "430806": 5, "678033": 5, "2297": 5, "273112": 5, "83": [5, 8], "549794": 5, "213768": 5, "016792e": 5, "290775": 5, "5560": 5, "934010": 5, "lt_parotid": 5, "76": [5, 7], "793782e": 5, "747940": 5, "772190": 5, "119": 5, "208": 5, "155809": 5, "366267": 5, "094309": 5, "943717e": 5, "165854": 5, "1667": 5, "158645": 5, "lt_deep_prtd": 5, "208941e": 5, "855015": 5, "347047": 5, "221": 5, "206174": 5, "135812": 5, "002344": 5, "204188e": 5, "152867": 5, "1949": 5, "874234": 5, "lt_sup_prtd": 5, "80": [5, 6], "932703e": 5, "486043": 5, "238202": 5, "112": 5, "178": 5, "082085": 5, "869833": 5, "060561": 5, "390531e": 5, "193892": 5, "1220": 5, "955994": 5, "mandibl": 5, "1294": 5, "492566e": 5, "931930": 5, "637": 5, "881065": 5, "602": 5, "188": 5, "1851": 5, "328": 5, "164625": 5, "787": 5, "427714": 5, "236129": 5, "270266e": 5, "018566": 5, "213150": 5, "151566": 5, "optic_nerv": 5, "702145e": 5, "379679": 5, "759629": 5, "850": 5, "1437": 5, "985759": 5, "110": 5, "185458": 5, "087479": 5, "869876e": 5, "149776": 5, "11370": 5, "238228": 5, "oral_avoid": 5, "1044": 5, "299995e": 5, "093911": 5, "257": 5, "075139": 5, "615572": 5, "600": 5, "257436": 5, "282101": 5, "719315e": 5, "063132": 5, "294221": 5, "363063": 5, "ptv57": 5, "74": [5, 7], "141580e": 5, "655007": 5, "569312": 5, "974": 5, "2389": 5, "424098": 5, "204": 5, "728314": 5, "066404": 5, "127108e": 5, "132085": 5, "41822": 5, "111014": 5, "ptv63": 5, "270": 5, "429": [5, 7], "911092e": 5, "852886": 5, "173846": 5, "189480": 5, "384": 5, "016550": 5, "549360": 5, "549484e": 5, "072524": 5, "146160": 5, "163747": 5, "ptv70": 5, "55": 5, "387": 5, "495341e": 5, "153192": 5, "991129": 5, "1000": [5, 7], "3976": 5, "904178": 5, "306": 5, "295730": 5, "086361": 5, "278205e": 5, "126097": 5, "87418": 5, "493331": 5, "post_neck": 5, "216": 5, "456349e": 5, "744445": 5, "016919": 5, "143": 5, "1555": 5, "872956": 5, "237": 5, "810678": 5, "155396": 5, "888695e": 5, "117753": 5, "51927": 5, "617163": 5, "rt_parotid": 5, "763875e": 5, "571701": 5, "798874": 5, "124": 5, "1345": 5, "355544": 5, "339575": 5, "353950": 5, "046488e": 5, "214621": 5, "3975": 5, "769687": 5, "ring": 5, "rt_deep_prtd": 5, "72": 5, "353914e": 5, "596270": 5, "225243": 5, "1448": 5, "602131": 5, "611962": 5, "152671": 5, "873580e": 5, "216523": 5, "8531": 5, "391337": 5, "rt_sup_prtd": 5, "699281e": 5, "627386": 5, "784448": 5, "115": 5, "1206": 5, "682879": 5, "091120": 5, "311626": 5, "488884e": 5, "200511": 5, "2927": 5, "633827": 5, "chiasm": 5, "122952e": 5, "907659": 5, "686332": 5, "1223": 5, "397863": 5, "989482": 5, "099615": 5, "212790e": 5, "383310": 5, "5285": 5, "781869": 5, "cold": 5, "882986e": 5, "265029": 5, "388430": 5, "645": 5, "849018": 5, "162": 5, "707419": 5, "117025": 5, "248290e": 5, "163774": 5, "12220": 5, "107157": 5, "cool_off": 5, "54": 5, "915266e": 5, "894287": 5, "218110": 5, "203": 5, "733117": 5, "244808": 5, "523930": 5, "550678e": 5, "149391": 5, "2713": 5, "685499": 5, "ctv_57": 5, "135206e": 5, "351470": 5, "309885": 5, "972": 5, "1988": 5, "376180": 5, "171": [5, 7], "730129": 5, "093002": 5, "613603e": 5, "148683": 5, "29437": 5, "802764": 5, "hotspot": 5, "187": 5, "1282": 5, "445281e": 5, "115974": 5, "375": 5, "515514": 5, "196": 5, "964": 5, "2508": 5, "321": 5, "413652": 5, "660": 5, "328969": 5, "522511": 5, "996004e": 5, "020100": 5, "295022": 5, "446264": 5, "larynx_avoid": 5, "975": 5, "655352e": 5, "605136": 5, "369": 5, "268506": 5, "1237": 5, "353": 5, "504851": 5, "559": 5, "714876": 5, "451007": 5, "331907e": 5, "063251": 5, "176921": 5, "512696": 5, "v3": 5, "3709": 5, "925652": 5, "2688": 5, "291550": 5, "553871": 5, "146": 5, "395683": 5, "858795": 5, "433568": 5, "122560": 5, "325": 5, "512886": 5, "304520": 5, "484503": 5, "385685": 5, "082298": 5, "179092": 5, "371394": 5, "130000": 5, "092384": 5, "497162": 5, "978754": 5, "222574": 5, "201053": 5, "84": 5, "640503": 5, "3131": 5, "858826": 5, "149075": 5, "677738": 5, "766531": 5, "3123": 5, "699188": 5, "145": 5, "660400": 5, "551830": 5, "922256": 5, "579562": 5, "444237": 5, "419106": 5, "986429": 5, "608333": 5, "910873": 5, "722030": 5, "243333": 5, "44": [5, 7, 8], "633333": 5, "819466": 5, "882912": 5, "387500": 5, "795833": 5, "870544": 5, "695267": 5, "463077": 5, "42": [5, 7], "843662": 5, "011154": 5, "785028": 5, "719756": 5, "280000": 5, "103": 5, "225708": 5, "481693": 5, "202899": 5, "124706": 5, "222847": 5, "183968": 5, "981964": 5, "899716": 5, "101947": 5, "172": [5, 7], "883034": 5, "743240": 5, "60": 5, "450535": 5, "955415": 5, "456": 5, "015587": 5, "606650": 5, "455984": 5, "783420": 5, "174": 5, "854279": 5, "756176": 5, "159714": 5, "474556": 5, "190819": 5, "072630": 5, "400455": 5, "722973": 5, "420280": 5, "257150": 5, "456250": 5, "916667": 5, "910728": 5, "038557": 5, "269444": 5, "693590": 5, "898071": 5, "427364": 5, "240769": 5, "989552": 5, "115654": 5, "219050": 5, "963571": 5, "269500": 5, "266998": 5, "732640": 5, "155556": 5, "63": 5, "781250": 5, "623047": 5, "087975": 5, "294831": 5, "537787": 5, "044617": 5, "649550": 5, "448571": 5, "036364": 5, "036034": 5, "251480": 5, "509174": 5, "743333": 5, "757143": 5, "primarili": 6, "deal": 6, "instanc": [6, 9, 13, 18, 23], "do": [6, 9], "eqd2": 6, "correct": [6, 19], "pseudo": 6, "mri": 6, "show": 6, "describ": [6, 16, 18, 24], "mention": 6, "read_simple_itk_imag": [6, 9, 24], "iter": [6, 10, 24], "hard": 6, "code": [6, 9], "appear": [6, 13], "alpha_beta": 6, "_": [6, 23], "iterrow": [6, 9, 10], "eqd2_ab": 6, "scale": 6, "df_linked_plan": 6, "linked_plan": [6, 18, 23], "ds_plan": 6, "fraction": 6, "int": [6, 12, 20, 21, 23, 24], "fractiongroupsequ": 6, "numberoffractionsplan": 6, "dose_path": 6, "cast": 6, "sitkfloat64": 6, "dose_id": [6, 18, 23], "_eqd2_ab": 6, "eqd2_dos": 6, "add_dose_object": [6, 18, 23], "systemerror": [6, 18, 21, 23, 24], "c16e76_eqd2_ab2": 6, "833a74_eqd2_ab2": 6, "bf3fba_eqd2_ab2": 6, "309e1a_eqd2_ab2": 6, "threshold": 6, "infer": [6, 8], "bone_threshold": 6, "300": [6, 7], "hu": 6, "idx": [6, 9, 10], "ct_row": [6, 9], "bone_mask": 6, "mask": [6, 10, 12, 16, 18, 23], "structure_set_id": 6, "bones_": 6, "new_structure_set": 6, "add_structure_object": [6, 18, 23], "bones_72b0f9": 6, "bones_c4ffd0": 6, "bones_8e0da9": 6, "bones_ec4aec": 6, "bones_33c44a": 6, "bones_b281ea": 6, "b": 6, "flag": [6, 18, 24], "newli": 6, "laplacian": 6, "sharpen": 6, "img_sharp": 6, "laplaciansharpen": 6, "sharp_": 6, "add_image_object": [6, 18, 23], "sharp_72b0f9": 6, "sharp_c4ffd0": 6, "sharp_8e0da9": 6, "sharp_ec4aec": 6, "sharp_33c44a": 6, "sharp_b281ea": 6, "between": [6, 12, 15], "home": [6, 8], "runner": [6, 8], "cach": [6, 8], "pypoetri": [6, 8], "virtualenv": [6, 8], "pnpn9n62": [6, 8], "py3": [6, 8], "lib": [6, 8, 18], "python3": [6, 8, 18], "site": [6, 8], "packag": [6, 8], "pydicom": [6, 8, 9, 20, 24], "valuerep": [6, 8], "py": [6, 8, 15, 18], "443": [6, 8], "userwarn": [6, 8], "invalid": [6, 8], "vr": [6, 8], "da": [6, 8, 9], "nat": [6, 8], "msg": [6, 8], "09object": 6, "65object": 6, "31object": 6, "43object": 6, "pyradiom": [7, 12], "type": [7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24], "compute_radiom": [7, 12], "b5bddb": [7, 9, 11], "6834c9": [7, 9, 11], "last": 7, "structureset": [7, 11, 17, 21], "No": [7, 10, 11, 13], "379739e": 7, "563380": 7, "382764": 7, "745": 7, "940": 7, "951183": 7, "379070": 7, "961993": 7, "642731e": 7, "232723": 7, "3838": 7, "804579": 7, "486142e": 7, "343017": 7, "078823": 7, "577": 7, "806": 7, "250737": 7, "881633": 7, "753651": 7, "185112e": 7, "273513": 7, "1741": 7, "864194": 7, "871": 7, "502": 7, "907161e": 7, "313815": 7, "729": 7, "756106": 7, "778": 7, "1357": 7, "906500": 7, "747": 7, "249117": 7, "747786": 7, "006062e": 7, "069585": 7, "25837": 7, "268599": 7, "889": 7, "480": 7, "790689e": 7, "414603": 7, "735": 7, "842185": 7, "789": 7, "1215": 7, "876692": 7, "755": 7, "465238": 7, "617379": 7, "233563e": 7, "063675": 7, "29264": 7, "004413": 7, "830546e": 7, "638360": 7, "051730": 7, "144": 7, "573": 7, "213519": 7, "364661": 7, "348291": 7, "758810e": 7, "205445": 7, "1705": 7, "073671": 7, "popular": 7, "librari": [7, 9, 15], "document": [7, 9, 10, 11, 15, 19, 21], "shape": 7, "group": 7, "first_order_featur": 7, "radiomicsfirstord": 7, "getfeaturenam": 7, "shape_featur": 7, "radiomicsshap": 7, "few": [7, 19], "maximum2ddiametercolumn": 7, "maximum2ddiameterrow": 7, "maximum2ddiameterslic": 7, "maximum3ddiamet": 7, "meshvolum": 7, "minoraxislength": 7, "spheric": 7, "surfacearea": 7, "surfacevolumeratio": 7, "voxelvolum": 7, "223": 7, "924778": 7, "222": 7, "309084": 7, "619884": 7, "224": 7, "231209": 7, "193220e": 7, "733471": 7, "408351": 7, "11919": 7, "810387": 7, "373285": 7, "316495e": 7, "163": 7, "733306": 7, "040344": 7, "151": 7, "241053": 7, "164": 7, "152138": 7, "510135e": 7, "977462": 7, "781597": 7, "51121": 7, "049949": 7, "068069": 7, "526486e": 7, "236": 7, "649430": 7, "242": 7, "714238": 7, "429595": 7, "245": 7, "982024": 7, "802886e": 7, "702531": 7, "568696": 7, "125964": 7, "905979": 7, "069868": 7, "801747e": 7, "231": 7, "159117": 7, "247": 7, "961931": 7, "186": 7, "213760": 7, "248": 7, "126635": 7, "159708e": 7, "513299": 7, "582917": 7, "138614": 7, "093158": 7, "064182": 7, "161386e": 7, "128718": 7, "313": 7, "974459": 7, "529436": 7, "314": 7, "315983": 7, "050233e": 7, "966235": 7, "418454": 7, "19722": 7, "946105": 7, "279749": 7, "217496e": 7, "195": 7, "229": 7, "357": 7, "215": 7, "certain": [7, 21], "header": [7, 12, 21, 22], "tag": [7, 12, 24], "recomput": [7, 12], "patientsex": [7, 9], "studyd": [7, 9, 24], "meta": [7, 19], "image_meta_data": [7, 12], "structure_meta_data": [7, 12], "struct": [7, 16], "20040303": 7, "cross": 8, "section": [8, 10], "them": [8, 10], "particularli": 8, "noth": 8, "gone": 8, "advanc": [8, 13], "call": [8, 17, 18, 23], "vis_": 8, "82": 8, "73": 8, "97": 8, "argument": [8, 9, 11, 17, 21], "ve": 8, "ad": [8, 10, 11, 18, 23], "391": 8, "40object": 8, "present": [9, 10, 11, 17, 21], "tip": 9, "trick": 9, "heavili": 9, "orient": [9, 13], "around": [9, 13], "familiar": 9, "tutori": 9, "335375068555": [9, 11], "structu": [9, 11], "770569242984": [9, 11], "639871532605": [9, 11], "234842392725": [9, 11], "135073567254": [9, 11], "269433294341": [9, 11], "338518041666": [9, 11], "188371727865": [9, 11], "330486033168": [9, 11], "109432485688": [9, 11], "267594131248": [9, 11], "106943890850": [9, 11], "742383887179": [9, 11], "just": [9, 13], "end": [9, 18], "complet": [9, 11, 15], "first_row": 9, "0008": 9, "0005": 9, "iso_ir": 9, "primari": 9, "axial": 9, "ct_som5": 9, "spi": 9, "0012": 9, "creation": 9, "20050726": 9, "0013": 9, "tm": 9, "090342": 9, "451000": 9, "0016": 9, "sop": [9, 16, 18, 23], "ui": 9, "storag": 9, "0018": 9, "168227681755643512811062844019": 9, "0020": 9, "20031213": 9, "0021": 9, "0023": 9, "content": [9, 23, 24], "0030": 9, "140027": 9, "397000": 9, "0031": 9, "141846": 9, "903000": 9, "0033": 9, "141558": 9, "073000": 9, "0050": 9, "access": [9, 23], "number": [9, 24], "sh": [9, 11], "1507292331039118": 9, "0060": 9, "0070": 9, "manufactur": 9, "lo": 9, "siemen": 9, "0090": 9, "physician": 9, "pn": 9, "1030": 9, "rcct_thorax_8f_high": 9, "adult": 9, "103e": 9, "p1b3respct": 9, "b30f": 9, "ex": 9, "1090": 9, "sensat": 9, "open": [9, 13, 19], "0010": 9, "birth": 9, "0040": 9, "sex": [9, 13], "0062": 9, "ident": [9, 13], "remov": [9, 11, 13, 21, 24], "ye": 9, "0063": 9, "de": 9, "identif": 9, "method": [9, 11], "per": [9, 10, 11, 18, 23], "p": 9, "annex": 9, "0064": 9, "sequenc": 9, "item": [9, 14, 17], "0100": 9, "113100": 9, "0102": 9, "scheme": 9, "design": 9, "dcm": [9, 16], "0104": 9, "applic": 9, "confidenti": 9, "profil": 9, "113101": 9, "option": [9, 12, 16, 18, 20, 21, 22, 23, 24, 25], "113104": 9, "113105": 9, "descriptor": 9, "113107": 9, "retain": 9, "longitudin": 9, "tempor": 9, "modifi": 9, "113108": 9, "characterist": [9, 13], "113109": 9, "devic": 9, "113111": 9, "safe": 9, "privat": [9, 13], "creator": 9, "ctp": 9, "1010": 9, "1013": 9, "70144598": 9, "0015": 9, "bodi": [9, 13], "examin": 9, "lung": 9, "thick": 9, "kvp": 9, "120": 9, "collect": [9, 20], "diamet": 9, "500": 9, "1100": 9, "reconstruct": 9, "1110": 9, "sourc": [9, 11, 19], "detector": 9, "1040": 9, "1111": 9, "570": 9, "1120": 9, "gantri": 9, "tilt": 9, "1130": 9, "height": 9, "184": 9, "1140": 9, "rotat": 9, "direct": 9, "cw": 9, "1150": 9, "exposur": 9, "361": 9, "1151": [9, 10], "x": [9, 16], "rai": 9, "tube": 9, "1152": 9, "1160": 9, "1170": 9, "power": 9, "1190": 9, "focal": 9, "spot": 9, "1210": 9, "convolut": 9, "kernel": 9, "5100": 9, "posit": [9, 13, 16], "hf": 9, "000d": 9, "208415500372767635171688815875": 9, "000e": 9, "335375068555840597820636886710": 9, "0011": 9, "acquisit": 9, "149": 9, "0032": 9, "249": 9, "51171875": 9, "433": 9, "702": 9, "0037": 9, "0052": 9, "frame": [9, 16, 18, 23, 24], "187709044743964862096664351089": 9, "1041": 9, "0028": 9, "0002": 9, "0004": 9, "photometr": 9, "interpret": 9, "monochrome2": 9, "512": 9, "9765625": 9, "alloc": 9, "0101": 9, "high": 9, "0103": 9, "0303": 9, "1050": 9, "center": 9, "1051": 9, "width": [9, 12], "400": 9, "1052": 9, "rescal": 9, "intercept": 9, "1053": 9, "slope": 9, "3253": 9, "varian": 9, "vision": 9, "7fe0": 9, "ow": 9, "none": [9, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25], "slow": 9, "especi": 9, "mani": 9, "keep_tag": [9, 24], "know": [9, 16], "attribut": [9, 17], "speed": 9, "significantli": 9, "fact": 9, "rcct_thorax_8f": 9, "special": 9, "rcctpet_thorax_8f": 9, "rcct_thorax_8f_high_contrast": 9, "rcct_thorax_8f_low": 9, "could": [9, 13, 17], "doesn": [9, 14, 23, 24], "obj_datetim": 9, "2003": 9, "One": [10, 12], "inconsist": 10, "global": 10, "introduc": 10, "simplifi": 10, "kei": [10, 12, 17, 18, 19, 21, 23, 24], "sum": [10, 18, 23], "voxel": [10, 11, 21], "structure_set": [10, 21, 23, 24], "structure_nam": [10, 18, 23], "getarrayfromimag": [10, 18, 23], "52528": 10, "68074": 10, "4157": 10, "23857": 10, "consist": [10, 15, 19], "resolv": [10, 11, 15, 19], "variat": 10, "structure_set_row": [10, 17, 23, 24], "correspond": [10, 12, 18, 21, 23], "neither": 10, "structure_set_map": 10, "properli": [10, 21], "json": [10, 16], "leav": 10, "struct_subset": 10, "sub_map": 10, "local_map": 10, "had": 10, "stucture_set": 10, "fetch": [10, 11, 12, 19, 20, 24], "nnunet": 10, "automat": [10, 15], "self": 11, "configur": [11, 18, 19, 21, 23, 24], "deep": 11, "learn": [11, 13], "biomed": 11, "doe": [11, 18, 21, 23], "wai": [11, 13, 15, 19], "v1": 11, "contribut": [11, 13], "v2": 11, "welcom": [11, 13, 15, 19], "log": [11, 18, 19, 21, 23], "consult": 11, "conduct": 11, "nnunet_raw_data_bas": 11, "environ": [11, 13, 15, 19, 21], "scratch": 11, "nnscratch": 11, "verbos": [11, 23, 24], "set_verbos": [11, 23], "mapping_dict": [11, 23, 24], "nnunet_task_id": 11, "nnunet_task_nam": 11, "lctsc_test": 11, "nnunet_task_descript": 11, "expect": [11, 15, 19, 21], "multi": 11, "yet": [11, 18, 21, 23, 24], "state": 11, "check_dataset": [11, 21], "ok": 11, "randomli": 11, "training_cas": [11, 21], "testing_cas": [11, 21], "split_dataset": [11, 21], "train_test_split": [11, 21], "sklearn": [11, 21], "keyword": [11, 17, 24], "possibl": [11, 19], "anonymis": [11, 21], "check_duplicates_train_test": [11, 21], "check_structure_nam": [11, 21], "proceed": 11, "df_result": 11, "nbsp": 11, "unabl": 11, "assign": [11, 21], "smaller": [11, 21], "larger": [11, 21], "assign_overlap_to_largest": [11, 21], "check_overlapping_structur": [11, 21], "affect": [11, 13], "rule": 11, "proce": 11, "nnunet_dataset_path": 11, "prepare_dataset": [11, 17, 21], "nnunet_raw_data": 11, "task123_lctsc_test": 11, "generate_training_script": [11, 21], "command": [11, 15], "top": [11, 17], "activ": [11, 21], "virtual": [11, 15], "environemnt": 11, "script_head": [11, 21], "venv": 11, "bin": [11, 12], "script_path": 11, "back": 11, "train_123_lctsc_test": 11, "analysedata": [12, 23], "paramet": [12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25], "df_process": 12, "union": [12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "float": 12, "d99": 12, "99": 12, "v10": 12, "v50": 12, "dcc5": 12, "dcc50": 12, "valueerror": [12, 14, 16, 18, 21, 23, 24], "request": [12, 13, 15, 18], "bin_width": 12, "structure_meta_data_col": 12, "dose_meta_data_col": 12, "bool": [12, 16, 18, 21, 22, 23, 24, 25], "string": [12, 17, 18, 23, 24], "structure_match_regex": 12, "resample_to_imag": 12, "custom_radiom": 12, "http": [12, 13, 18, 24], "readthedoc": 12, "io": 12, "en": 12, "html": [12, 13], "pyrad_default_set": 12, "regular": 12, "express": [12, 13], "resampl": 12, "similar": 12, "entri": [12, 16, 17, 18, 23, 24], "attach": 12, "default_mapping_id": [12, 23, 24], "_description_": 12, "previous": [12, 18, 22, 23], "converted_dir_nam": [12, 18, 23], "statist": 12, "similarity_analysi": 12, "member": 13, "contributor": [13, 15], "leader": 13, "particip": 13, "commun": 13, "harass": 13, "free": 13, "experi": 13, "everyon": 13, "regardless": 13, "ag": 13, "size": 13, "visibl": 13, "invis": 13, "disabl": [13, 18, 23], "ethnic": 13, "gender": 13, "educ": 13, "socio": 13, "econom": 13, "statu": 13, "nation": 13, "person": 13, "race": 13, "religion": 13, "sexual": 13, "act": 13, "interact": 13, "divers": 13, "inclus": 13, "healthi": 13, "behavior": 13, "empathi": 13, "kind": 13, "toward": 13, "peopl": 13, "Being": 13, "opinion": 13, "viewpoint": 13, "give": [13, 16, 19], "gracefulli": 13, "construct": 13, "feedback": 13, "apolog": 13, "mistak": 13, "focus": 13, "best": [13, 21], "individu": 13, "unaccept": 13, "languag": 13, "imageri": 13, "attent": 13, "troll": 13, "insult": 13, "derogatori": 13, "comment": 13, "polit": 13, "attack": 13, "public": [13, 24], "publish": 13, "physic": [13, 16, 19], "email": 13, "address": 13, "without": 13, "explicit": 13, "permiss": 13, "inappropri": 13, "profession": 13, "clarifi": 13, "appropri": [13, 15, 17, 19, 24], "fair": 13, "action": 13, "deem": 13, "threaten": 13, "offens": 13, "harm": 13, "right": 13, "edit": 13, "reject": 13, "commit": 13, "wiki": 13, "moder": 13, "decis": 13, "offici": 13, "repres": 13, "mail": 13, "post": 13, "social": 13, "media": 13, "account": 13, "appoint": 13, "onlin": 13, "offlin": 13, "event": 13, "abus": 13, "report": [13, 19], "almouie": [13, 19], "unsw": [13, 19], "edu": [13, 19], "au": [13, 19], "complaint": 13, "review": [13, 15], "investig": [13, 19], "promptli": 13, "fairli": 13, "oblig": 13, "privaci": 13, "secur": 13, "incid": 13, "impact": 13, "consequ": 13, "violat": 13, "unprofession": 13, "unwelcom": 13, "written": 13, "clariti": 13, "natur": 13, "explan": 13, "why": 13, "apologi": 13, "involv": 13, "unsolicit": 13, "period": 13, "avoid": 13, "channel": 13, "term": 13, "lead": [13, 24], "seriou": 13, "sustain": 13, "pattern": 13, "aggress": 13, "disparag": 13, "adapt": [13, 24], "coven": 13, "version": [13, 19], "www": 13, "org": 13, "code_of_conduct": 13, "inspir": 13, "mozilla": 13, "ladder": 13, "answer": 13, "question": [13, 24], "about": [13, 16], "faq": 13, "translat": 13, "pydicerconfig": 14, "working_dir": [14, 18, 23], "attributeerror": [14, 17, 21], "given": [14, 17, 18, 23, 24], "get_working_dir": 14, "save_config": 14, "bug": [15, 19], "fix": [15, 19], "guidanc": 15, "develop": [15, 19], "branch": 15, "main": [15, 16, 17, 25], "implement": 15, "github": [15, 18, 19], "pull": [15, 24], "At": 15, "maintain": 15, "submiss": 15, "manag": [15, 21], "instruct": 15, "dev": 15, "extra": 15, "script": [15, 19, 21], "conform": 15, "pep": 15, "pylint": [15, 18, 23], "But": 15, "better": 15, "lint": 15, "vscode": 15, "pycharm": 15, "sure": 15, "suggest": 15, "submit": 15, "re": [15, 18, 23], "suit": 15, "repositori": 15, "pytest": 15, "realli": 15, "convertdata": [16, 23], "facilit": [16, 25], "its": 16, "intend": [16, 24], "add_entri": 16, "get_object_typ": 16, "handle_missing_slic": 16, "ignore_dupl": 16, "interpol": 16, "usag": 16, "input_d": 16, "dicom_file_1": 16, "dicom_file_2": 16, "98": 16, "dicom_file_3": 16, "96": 16, "file_paths_list": 16, "input_dict": 16, "df_file": 16, "preprocessdata": [16, 22], "filepath": 16, "booleanbool": 16, "specific": 16, "ignor": 16, "ones": 16, "link_via_frame_of_refer": 16, "FOR": 16, "convert_dicom_head": 16, "dcm_file": 16, "binary_path": 16, "json_fil": 16, "rel": [16, 23, 24], "binari": 16, "convert_rtstruct": 16, "dcm_img": 16, "dcm_rt_file": 16, "struct_": 16, "output_dir": [16, 18, 23], "output_img": 16, "underscor": 16, "write": [16, 18, 20], "overrid": 16, "write_nrrd_from_mask_directori": 16, "mask_directori": 16, "output_fil": 16, "colormap": 16, "color": 16, "linearsegmentedcolormap": 16, "nrrd": 16, "color_map": 16, "get_cmap": 16, "pt": [16, 19], "convert_dicom_to_nifti_pt": 16, "input_filepath": 16, "output_filepath": 16, "alert": 16, "weight": 16, "suv": 16, "runtimeerror": 16, "unit": [16, 24], "numpi": 16, "bound": 16, "box": 16, "arrai": 16, "get_physical_values_pt": 16, "get_sitk_volume_from_np": 16, "np_imag": 16, "pixel_spac": 16, "image_position_pati": 16, "np": 16, "get_suv_from_bqml": 16, "decay_tim": 16, "patient_weight": 16, "bqml": 16, "decai": 16, "get_suv_philip": 16, "cnt": 16, "philip": 16, "is_approx_equ": 16, "toler": 16, "preparedataset": [17, 23], "prepart": 17, "add_object_to_dataset": 17, "data_object_row": 17, "callabl": [17, 18, 23], "kwarg": [17, 21, 23, 24], "upon": 17, "known": 17, "df_prepar": 17, "approv": 17, "get_mapped_structure_nam": 17, "get_standardised_structure_nam": 17, "get_unmapped_structur": 17, "alwai": [17, 19], "empti": [17, 18, 23], "view": 17, "get_mapping_for_structure_set": 17, "search": 17, "hierarchi": [17, 22], "uniqu": [18, 23], "Of": [18, 23], "image_id": [18, 23], "linked_imag": [18, 23], "add_object": [18, 23], "object_id": [18, 23], "object_typ": [18, 23], "referenc": [18, 22, 23], "structure_id": [18, 23], "get_linked_for_and_ref_uid": 18, "linked_obj": 18, "tupl": [18, 24], "he": 18, "get_segmentation_log_path": 18, "relav": 18, "param": [18, 23], "read_segmentation_log": 18, "segmentation_funct": [18, 23], "segemtant": [18, 23], "segmet": [18, 23], "segment_funct": [18, 23], "algorithm": [18, 23], "customis": [18, 23], "wrap": [18, 23], "notat": [18, 23], "warpper": [18, 23], "tempfil": [18, 23], "input_imag": [18, 23], "python_api": [18, 23], "outsid": [18, 23], "toplevel": [18, 23], "temporarydirectori": [18, 23], "temporari": [18, 23], "total": [18, 23], "input_dir": [18, 23], "input_fil": [18, 23], "writeimag": [18, 23], "mask_fil": [18, 23], "fov": [18, 23], "typeerror": [18, 23], "requi": [18, 23], "write_autoseg_log": 18, "core": 18, "opt": 18, "hostedtoolcach": 18, "x64": 18, "success": 18, "error_msg": 18, "boolean": 18, "inic": 18, "successfulli": 18, "messag": 18, "get_available_mhub_model": 18, "mhub": 18, "load_output_nifti": 18, "run_mhub_model": 18, "mhub_model": 18, "mhub_config_fil": 18, "gpu": 18, "docker": 18, "made": 18, "ai": 18, "custom": 18, "sdk": 18, "com": [18, 24], "wasserth": 18, "eas": 19, "research": 19, "flexibl": 19, "principl": 19, "mind": 19, "generalis": 19, "under": 19, "hood": 19, "rememb": 19, "unexpect": 19, "mr": 19, "experiment": 19, "Not": 19, "intermedi": 19, "side": 19, "couldn": [19, 22], "pac": [19, 20], "tcia": [19, 20], "orthanc": [19, 20], "visualist": 19, "assist": 19, "testdata": 19, "extend": 19, "star": 19, "ingham": 19, "team": 19, "south": 19, "western": 19, "sydnei": 19, "australian": 19, "network": 19, "phillip": 19, "chlap": 19, "daniel": 19, "al": 19, "mouiee": 19, "filesystem": 20, "filesysteminput": [20, 23], "dicompacsinput": [20, 23], "host": 20, "port": 20, "ae_titl": 20, "wildcard": 20, "orthancinput": [20, 23], "usernam": 20, "password": 20, "adapt_dataset_from_byt": 20, "blob": 20, "byte": 20, "come": 20, "tciainput": 20, "local": 20, "web": 20, "webinput": [20, 23], "data_url": 20, "nnunetdataset": 21, "nnunet_id": 21, "nnunet_nam": 21, "nnunet_descript": 21, "image_mod": 21, "add_testing_cas": 21, "inadvert": 21, "sometim": 21, "overlap": 21, "smallest": 21, "largest": 21, "script_directori": 21, "fold": 21, "bash": 21, "2d": 21, "3d_lowr": 21, "3d_fullr": 21, "insert": 21, "filenotfounderror": 21, "prep_label_map_from_one_hot": 21, "hasn": 21, "word": 21, "wil": 21, "in_screen": 21, "circumst": 21, "mostli": 21, "monitor": 21, "termin": 21, "screen": 21, "background": 21, "session": 21, "dicionari": 22, "hold": 22, "input_directori": 22, "regard": 22, "scan": 22, "res_dict": 22, "field": [22, 24], "studyinstanceuid": 22, "modailti": 22, "sopclassuid": 22, "frameofreferenceuid": 22, "seriesuid": 22, "referencedframeofreferenceuid": 22, "scan_fil": 22, "variabl": 23, "visualisedata": [23, 25], "input_obj": 23, "inputbas": 23, "deriv": 23, "summari": 23, "summaris": 23, "join_working_directori": [23, 24], "adjust": [23, 24], "pipelin": 23, "consol": 23, "progress": [23, 24], "update_log": 23, "reset": 23, "logger": 23, "everi": 23, "copy_doc": 24, "copy_func": 24, "remove_arg": 24, "anoth": 24, "decor": 24, "docstr": 24, "stackoverflow": 24, "68901049": 24, "onto": 24, "foo": 24, "require_tim": 24, "Will": 24, "attempt": 24, "seriesd": 24, "seriestim": 24, "fallback": 24, "studytim": 24, "instancecreationd": 24, "instancecreationtim": 24, "compon": 24, "download_and_extract_zip_fil": 24, "zip_url": 24, "output_directori": 24, "zip": 24, "url": 24, "get_iter": 24, "length": 24, "functio": 24, "hash_uid": 24, "truncat": 24, "trucat": 24, "load_dvh": 24, "remove_tag": 24, "kept": 24, "map_structure_nam": 24, "struct_map_dict": 24, "accord": 24, "remap": 24, "renam": 24, "parse_patient_kwarg": 24, "helper": 24, "dataset_directori": 24}, "objects": {"pydicer.analyse": [[12, 0, 0, "-", "compare"], [12, 0, 0, "-", "data"]], "pydicer.analyse.compare": [[12, 1, 1, "", "compute_contour_similarity_metrics"], [12, 1, 1, "", "get_all_similarity_metrics_for_dataset"], [12, 1, 1, "", "prepare_similarity_metric_analysis"]], "pydicer.analyse.data": [[12, 2, 1, "", "AnalyseData"]], "pydicer.analyse.data.AnalyseData": [[12, 3, 1, "", "compute_dose_metrics"], [12, 3, 1, "", "compute_dvh"], [12, 3, 1, "", "compute_radiomics"], [12, 3, 1, "", "get_all_computed_radiomics_for_dataset"], [12, 3, 1, "", "get_all_dvhs_for_dataset"]], "pydicer.config": [[14, 2, 1, "", "PyDicerConfig"]], "pydicer.config.PyDicerConfig": [[14, 3, 1, "", "get_config"], [14, 3, 1, "", "get_working_dir"], [14, 3, 1, "", "save_config"], [14, 3, 1, "", "set_config"]], "pydicer.convert": [[16, 0, 0, "-", "data"], [16, 0, 0, "-", "headers"], [16, 0, 0, "-", "pt"], [16, 0, 0, "-", "rtstruct"]], "pydicer.convert.data": [[16, 2, 1, "", "ConvertData"], [16, 1, 1, "", "get_object_type"], [16, 1, 1, "", "handle_missing_slice"], [16, 1, 1, "", "link_via_frame_of_reference"]], "pydicer.convert.data.ConvertData": [[16, 3, 1, "", "add_entry"], [16, 3, 1, "", "convert"]], "pydicer.convert.headers": [[16, 1, 1, "", "convert_dicom_headers"]], "pydicer.convert.pt": [[16, 1, 1, "", "convert_dicom_to_nifti_pt"], [16, 1, 1, "", "get_physical_values_pt"], [16, 1, 1, "", "get_sitk_volume_from_np"], [16, 1, 1, "", "get_suv_from_bqml"], [16, 1, 1, "", "get_suv_philips"], [16, 1, 1, "", "is_approx_equal"]], "pydicer.convert.rtstruct": [[16, 1, 1, "", "convert_rtstruct"], [16, 1, 1, "", "write_nrrd_from_mask_directory"]], "pydicer.dataset": [[17, 0, 0, "-", "functions"], [17, 0, 0, "-", "preparation"], [17, 0, 0, "-", "structureset"]], "pydicer.dataset.functions": [[17, 1, 1, "", "rt_latest_dose"], [17, 1, 1, "", "rt_latest_struct"]], "pydicer.dataset.nnunet": [[21, 2, 1, "", "NNUNetDataset"]], "pydicer.dataset.nnunet.NNUNetDataset": [[21, 3, 1, "", "add_testing_cases"], [21, 3, 1, "", "check_dataset"], [21, 3, 1, "", "check_duplicates_train_test"], [21, 3, 1, "", "check_overlapping_structures"], [21, 3, 1, "", "check_structure_names"], [21, 3, 1, "", "generate_training_scripts"], [21, 3, 1, "", "prep_label_map_from_one_hot"], [21, 3, 1, "", "prepare_dataset"], [21, 3, 1, "", "split_dataset"], [21, 3, 1, "", "train"]], "pydicer.dataset.preparation": [[17, 2, 1, "", "PrepareDataset"]], "pydicer.dataset.preparation.PrepareDataset": [[17, 3, 1, "", "add_object_to_dataset"], [17, 3, 1, "", "prepare"], [17, 3, 1, "", "prepare_from_dataframe"]], "pydicer.dataset.structureset": [[17, 2, 1, "", "StructureSet"], [17, 1, 1, "", "get_mapping_for_structure_set"]], "pydicer.dataset.structureset.StructureSet": [[17, 3, 1, "", "get_mapped_structure_name"], [17, 3, 1, "", "get_standardised_structure_name"], [17, 3, 1, "", "get_unmapped_structures"], [17, 3, 1, "", "items"], [17, 3, 1, "", "keys"], [17, 3, 1, "", "values"]], "pydicer.generate": [[18, 0, 0, "-", "models"], [18, 0, 0, "-", "object"], [18, 0, 0, "-", "segmentation"]], "pydicer.generate.models": [[18, 1, 1, "", "get_available_mhub_models"], [18, 1, 1, "", "load_output_nifti"], [18, 1, 1, "", "run_mhub_model"], [18, 1, 1, "", "run_total_segmentator"]], "pydicer.generate.object": [[18, 1, 1, "", "add_dose_object"], [18, 1, 1, "", "add_image_object"], [18, 1, 1, "", "add_object"], [18, 1, 1, "", "add_structure_object"], [18, 1, 1, "", "get_linked_for_and_ref_uid"]], "pydicer.generate.segmentation": [[18, 1, 1, "", "get_segmentation_log_path"], [18, 1, 1, "", "read_all_segmentation_logs"], [18, 1, 1, "", "read_segmentation_log"], [18, 1, 1, "", "segment_dataset"], [18, 1, 1, "", "segment_image"], [18, 1, 1, "", "write_autoseg_log"]], "pydicer.input": [[20, 0, 0, "-", "filesystem"], [20, 0, 0, "-", "orthanc"], [20, 0, 0, "-", "pacs"], [20, 0, 0, "-", "tcia"], [20, 0, 0, "-", "test"], [20, 0, 0, "-", "web"]], "pydicer.input.filesystem": [[20, 2, 1, "", "FileSystemInput"]], "pydicer.input.orthanc": [[20, 2, 1, "", "OrthancInput"], [20, 1, 1, "", "adapt_dataset_from_bytes"]], "pydicer.input.orthanc.OrthancInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.input.pacs": [[20, 2, 1, "", "DICOMPACSInput"]], "pydicer.input.pacs.DICOMPACSInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.input.tcia": [[20, 2, 1, "", "TCIAInput"]], "pydicer.input.tcia.TCIAInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.input.test": [[20, 2, 1, "", "TestInput"]], "pydicer.input.web": [[20, 2, 1, "", "WebInput"]], "pydicer.input.web.WebInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.preprocess": [[22, 0, 0, "-", "data"]], "pydicer.preprocess.data": [[22, 2, 1, "", "PreprocessData"]], "pydicer.preprocess.data.PreprocessData": [[22, 3, 1, "", "preprocess"], [22, 3, 1, "", "scan_file"]], "pydicer.tool": [[23, 2, 1, "", "PyDicer"]], "pydicer.tool.PyDicer": [[23, 3, 1, "", "add_dose_object"], [23, 3, 1, "", "add_image_object"], [23, 3, 1, "", "add_input"], [23, 3, 1, "", "add_object"], [23, 3, 1, "", "add_structure_name_mapping"], [23, 3, 1, "", "add_structure_object"], [23, 3, 1, "", "get_structures_linked_to_dose"], [23, 3, 1, "", "preprocess"], [23, 3, 1, "", "read_all_segmentation_logs"], [23, 3, 1, "", "read_converted_data"], [23, 3, 1, "", "read_preprocessed_data"], [23, 3, 1, "", "read_quarantined_data"], [23, 3, 1, "", "run_pipeline"], [23, 3, 1, "", "segment_dataset"], [23, 3, 1, "", "segment_image"], [23, 3, 1, "", "set_verbosity"], [23, 3, 1, "", "update_logging"]], "pydicer": [[24, 0, 0, "-", "utils"]], "pydicer.utils": [[24, 1, 1, "", "add_structure_name_mapping"], [24, 1, 1, "", "copy_doc"], [24, 1, 1, "", "determine_dcm_datetime"], [24, 1, 1, "", "download_and_extract_zip_file"], [24, 1, 1, "", "fetch_converted_test_data"], [24, 1, 1, "", "get_iterator"], [24, 1, 1, "", "get_structures_linked_to_dose"], [24, 1, 1, "", "hash_uid"], [24, 1, 1, "", "load_dvh"], [24, 1, 1, "", "load_object_metadata"], [24, 1, 1, "", "map_structure_name"], [24, 1, 1, "", "parse_patient_kwarg"], [24, 1, 1, "", "read_converted_data"], [24, 1, 1, "", "read_preprocessed_data"], [24, 1, 1, "", "read_simple_itk_image"]], "pydicer.visualise": [[25, 0, 0, "-", "data"]], "pydicer.visualise.data": [[25, 2, 1, "", "VisualiseData"]], "pydicer.visualise.data.VisualiseData": [[25, 3, 1, "", "visualise"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"]}, "titleterms": {"auto": [0, 18], "segment": [0, 18], "infer": 0, "analysi": 0, "setup": [0, 2, 3, 5, 8, 9, 10, 11], "pydic": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 19, 23], "prepar": [0, 3, 5, 11, 17], "atla": 0, "defin": [0, 3, 11], "function": [0, 3, 17], "run": [0, 5, 8], "read": [0, 9], "log": [0, 1], "comput": [0, 4, 7], "similar": 0, "fetch": [0, 2, 4, 5, 7], "metric": [0, 4], "perform": 0, "configur": [1, 14], "get": [1, 5, 19], "set": [1, 6, 17], "option": 1, "avail": 1, "verbos": 1, "frame": 1, "refer": 1, "fallback": 1, "linkag": 1, "enforc": [1, 13], "dcm": 1, "file": 1, "extens": 1, "interpol": 1, "miss": 1, "slice": 1, "ignor": 1, "duplic": [1, 11], "gener": [1, 6, 8, 18], "nrrd": 1, "colormap": 1, "convert": [2, 9, 19], "data": [2, 3, 4, 5, 6, 7, 8, 9, 11, 16], "some": [2, 5], "preprocess": [2, 22], "inspect": [2, 4, 11], "load": [2, 3, 9, 10], "datafram": [2, 3], "quarantin": 2, "dataset": [3, 5, 11, 17], "explor": 3, "dose": [3, 4, 6], "structur": [3, 6, 10, 11, 17, 19], "from": 3, "custom": 3, "initialis": [4, 7, 11], "object": [4, 5, 6, 7, 9, 11, 18], "dvh": 4, "start": [5, 19], "work": [5, 9, 10], "directori": [5, 19], "creat": 5, "pipelin": [5, 19], "analys": [5, 12], "imag": [6, 19], "radiom": 7, "default": 7, "specifi": 7, "track": 7, "metadata": [7, 9], "visualis": [8, 25], "singl": 8, "patient": 8, "avoid": 8, "re": 8, "iter": 9, "over": 9, "keep": 9, "onli": 9, "specif": 9, "header": [9, 16], "tag": 9, "all": 9, "determin": 9, "date": 9, "structureset": 10, "add": 10, "name": [10, 11], "map": 10, "subset": 10, "local": 10, "us": 10, "nnunet": [11, 21], "nnunetdataset": 11, "check": 11, "split": 11, "overlap": 11, "train": 11, "script": 11, "code": [13, 15], "conduct": 13, "our": 13, "pledg": 13, "standard": [13, 15], "respons": 13, "scope": 13, "guidelin": 13, "1": 13, "correct": 13, "2": 13, "warn": 13, "3": 13, "temporari": 13, "ban": 13, "4": 13, "perman": 13, "attribut": 13, "contribut": [15, 19], "git": 15, "poetri": 15, "autom": 15, "test": 15, "convers": 16, "rtstruct": 16, "pet": 16, "model": 18, "python": 19, "dicom": 19, "instal": 19, "support": 19, "modal": 19, "author": 19, "input": 20, "util": 24}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"Auto-segmentation Inference & Analysis": [[0, "Auto-segmentation-Inference-&-Analysis"]], "Setup PyDicer": [[0, "Setup-PyDicer"], [2, "Setup-PyDicer"], [3, "Setup-PyDicer"], [8, "Setup-PyDicer"], [9, "Setup-PyDicer"], [10, "Setup-PyDicer"], [11, "Setup-PyDicer"]], "Prepare Atlas": [[0, "Prepare-Atlas"]], "Define Segmentation Function": [[0, "Define-Segmentation-Function"]], "Run Auto-segmentation": [[0, "Run-Auto-segmentation"]], "Read Segmentation Logs": [[0, "Read-Segmentation-Logs"]], "Auto-segmentation Analysis": [[0, "Auto-segmentation-Analysis"]], "Compute Similarity": [[0, "Compute-Similarity"]], "Fetch the similarity metrics": [[0, "Fetch-the-similarity-metrics"]], "Perform Analysis": [[0, "Perform-Analysis"]], "Configuration": [[1, "Configuration"], [14, "configuration"]], "Getting and Setting Options": [[1, "Getting-and-Setting-Options"]], "Options Available": [[1, "Options-Available"]], "Logging Verbosity": [[1, "Logging-Verbosity"]], "Frame of Reference Fallback Linkage": [[1, "Frame-of-Reference-Fallback-Linkage"]], "Enforce .dcm file extension": [[1, "Enforce-.dcm-file-extension"]], "Interpolate Missing Slices": [[1, "Interpolate-Missing-Slices"]], "Ignore Duplicate Slices": [[1, "Ignore-Duplicate-Slices"]], "Generate NRRD": [[1, "Generate-NRRD"]], "NRRD Colormap": [[1, "NRRD-Colormap"]], "Converting Data": [[2, "Converting-Data"]], "Fetch some data": [[2, "Fetch-some-data"], [5, "Fetch-some-data"]], "Preprocess": [[2, "Preprocess"]], "Inspect Preprocessed Data": [[2, "Inspect-Preprocessed-Data"]], "Convert Data": [[2, "Convert-Data"]], "Load Converted DataFrame": [[2, "Load-Converted-DataFrame"]], "Data Quarantine": [[2, "Data-Quarantine"]], "Dataset Preparation": [[3, "Dataset-Preparation"], [17, "dataset-preparation"]], "Explore data": [[3, "Explore-data"]], "Prepare dose data": [[3, "Prepare-dose-data"]], "Load prepared Dataset": [[3, "Load-prepared-Dataset"]], "Prepare Structure Dataset": [[3, "Prepare-Structure-Dataset"]], "Prepare Dataset from DataFrame": [[3, "Prepare-Dataset-from-DataFrame"]], "Define Custom Preparation Function": [[3, "Define-Custom-Preparation-Function"]], "Dose Metrics": [[4, "Dose-Metrics"]], "Fetch data": [[4, "Fetch-data"], [7, "Fetch-data"]], "Initialise PyDicer object": [[4, "Initialise-PyDicer-object"], [7, "Initialise-PyDicer-object"]], "Compute DVH": [[4, "Compute-DVH"]], "Inspect DVH": [[4, "Inspect-DVH"]], "Compute Dose Metrics": [[4, "Compute-Dose-Metrics"]], "Getting Started": [[5, "Getting-Started"], [19, "getting-started"]], "Setup working directory": [[5, "Setup-working-directory"]], "Create a PyDicer object": [[5, "Create-a-PyDicer-object"]], "Run the pipeline": [[5, "Run-the-pipeline"]], "Prepare a dataset": [[5, "Prepare-a-dataset"]], "Analyse the dataset": [[5, "Analyse-the-dataset"]], "Generating Data Objects": [[6, "Generating-Data-Objects"]], "Generate Dose Objects": [[6, "Generate-Dose-Objects"]], "Generate Structure Set Objects": [[6, "Generate-Structure-Set-Objects"]], "Generate Image Objects": [[6, "Generate-Image-Objects"]], "Compute Radiomics": [[7, "Compute-Radiomics"]], "Compute Default Radiomics": [[7, "Compute-Default-Radiomics"]], "Fetch computed Radiomics": [[7, "Fetch-computed-Radiomics"]], "Specify Radiomics to Compute": [[7, "Specify-Radiomics-to-Compute"]], "Track Metadata": [[7, "Track-Metadata"]], "Visualise Data": [[8, "Visualise-Data"], [8, "id1"]], "Run for a single patient": [[8, "Run-for-a-single-patient"]], "Avoid Re-generating Visualisation": [[8, "Avoid-Re-generating-Visualisation"]], "Working with Data": [[9, "Working-with-Data"]], "Read Converted Data": [[9, "Read-Converted-Data"]], "Iterating Over Objects": [[9, "Iterating-Over-Objects"]], "Loading Object Metadata": [[9, "Loading-Object-Metadata"]], "Keep only specific header tags": [[9, "Keep-only-specific-header-tags"]], "Loading metadata for all data objects": [[9, "Loading-metadata-for-all-data-objects"]], "Determine Date of Object": [[9, "Determine-Date-of-Object"]], "Working with Structures": [[10, "Working-with-Structures"]], "Load Structures with StructureSet": [[10, "Load-Structures-with-StructureSet"]], "Add Structure Name Mapping": [[10, "Add-Structure-Name-Mapping"]], "Subsets of Structures": [[10, "Subsets-of-Structures"]], "Local Structure Name Mappings": [[10, "Local-Structure-Name-Mappings"]], "Using Mappings in PyDicer": [[10, "Using-Mappings-in-PyDicer"]], "nnUNet Data Preparation": [[11, "nnUNet-Data-Preparation"]], "Setup nnUNet": [[11, "Setup-nnUNet"]], "Define Structures": [[11, "Define-Structures"]], "Initialise NNUNetDataset object": [[11, "Initialise-NNUNetDataset-object"]], "Inspect Dataset": [[11, "Inspect-Dataset"]], "Check Dataset": [[11, "Check-Dataset"]], "Split Dataset": [[11, "Split-Dataset"]], "Check for Duplicate Data": [[11, "Check-for-Duplicate-Data"]], "Check Structure Names": [[11, "Check-Structure-Names"]], "Check for Overlapping Structures": [[11, "Check-for-Overlapping-Structures"]], "Prepare nnUNet Dataset": [[11, "Prepare-nnUNet-Dataset"]], "Prepare nnUNet Training Scripts": [[11, "Prepare-nnUNet-Training-Scripts"]], "Analyse": [[12, "module-pydicer.analyse.data"]], "Code of Conduct": [[13, "code-of-conduct"]], "Our Pledge": [[13, "our-pledge"]], "Our Standards": [[13, "our-standards"]], "Enforcement Responsibilities": [[13, "enforcement-responsibilities"]], "Scope": [[13, "scope"]], "Enforcement": [[13, "enforcement"]], "Enforcement Guidelines": [[13, "enforcement-guidelines"]], "1. Correction": [[13, "correction"]], "2. Warning": [[13, "warning"]], "3. Temporary Ban": [[13, "temporary-ban"]], "4. Permanent Ban": [[13, "permanent-ban"]], "Attribution": [[13, "attribution"]], "Contributing": [[15, "contributing"], [19, "contributing"]], "Git": [[15, "git"]], "Poetry": [[15, "poetry"]], "Coding standards": [[15, "coding-standards"]], "Automated tests": [[15, "automated-tests"]], "Conversion": [[16, "conversion"]], "Data Conversion": [[16, "module-pydicer.convert.data"]], "Header Conversion": [[16, "module-pydicer.convert.headers"]], "RTSTRUCT Conversion": [[16, "module-pydicer.convert.rtstruct"]], "PET Conversion": [[16, "module-pydicer.convert.pt"]], "Prepare Dataset": [[17, "module-pydicer.dataset.preparation"]], "Preparation Functions": [[17, "module-pydicer.dataset.functions"]], "Structure Sets": [[17, "module-pydicer.dataset.structureset"]], "Generation": [[18, "generation"]], "Objects": [[18, "module-pydicer.generate.object"]], "Auto-segmentation": [[18, "module-pydicer.generate.segmentation"]], "Models": [[18, "module-pydicer.generate.models"]], "PyDicer: PYthon Dicom Image ConvertER": [[19, "pydicer-python-dicom-image-converter"]], "Installation": [[19, "installation"]], "Supported Modalities": [[19, "supported-modalities"]], "Directory Structure": [[19, "directory-structure"]], "Pipeline": [[19, "pipeline"]], "Authors": [[19, "authors"]], "Input": [[20, "module-pydicer.input.filesystem"]], "nnUNet": [[21, "nnunet"]], "Preprocessing": [[22, "module-pydicer.preprocess.data"]], "PyDicer": [[23, "pydicer"]], "Utils": [[24, "module-pydicer.utils"]], "Visualisation": [[25, "module-pydicer.visualise.data"]]}, "indexentries": {"analysedata (class in pydicer.analyse.data)": [[12, "pydicer.analyse.data.AnalyseData"]], "compute_contour_similarity_metrics() (in module pydicer.analyse.compare)": [[12, "pydicer.analyse.compare.compute_contour_similarity_metrics"]], "compute_dose_metrics() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.compute_dose_metrics"]], "compute_dvh() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.compute_dvh"]], "compute_radiomics() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.compute_radiomics"]], "get_all_computed_radiomics_for_dataset() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.get_all_computed_radiomics_for_dataset"]], "get_all_dvhs_for_dataset() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.get_all_dvhs_for_dataset"]], "get_all_similarity_metrics_for_dataset() (in module pydicer.analyse.compare)": [[12, "pydicer.analyse.compare.get_all_similarity_metrics_for_dataset"]], "module": [[12, "module-pydicer.analyse.compare"], [12, "module-pydicer.analyse.data"], [16, "module-pydicer.convert.data"], [16, "module-pydicer.convert.headers"], [16, "module-pydicer.convert.pt"], [16, "module-pydicer.convert.rtstruct"], [17, "module-pydicer.dataset.functions"], [17, "module-pydicer.dataset.preparation"], [17, "module-pydicer.dataset.structureset"], [18, "module-pydicer.generate.models"], [18, "module-pydicer.generate.object"], [18, "module-pydicer.generate.segmentation"], [20, "module-pydicer.input.filesystem"], [20, "module-pydicer.input.orthanc"], [20, "module-pydicer.input.pacs"], [20, "module-pydicer.input.tcia"], [20, "module-pydicer.input.test"], [20, "module-pydicer.input.web"], [22, "module-pydicer.preprocess.data"], [24, "module-pydicer.utils"], [25, "module-pydicer.visualise.data"]], "prepare_similarity_metric_analysis() (in module pydicer.analyse.compare)": [[12, "pydicer.analyse.compare.prepare_similarity_metric_analysis"]], "pydicer.analyse.compare": [[12, "module-pydicer.analyse.compare"]], "pydicer.analyse.data": [[12, "module-pydicer.analyse.data"]], "pydicerconfig (class in pydicer.config)": [[14, "pydicer.config.PyDicerConfig"]], "get_config() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.get_config"]], "get_working_dir() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.get_working_dir"]], "save_config() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.save_config"]], "set_config() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.set_config"]], "convertdata (class in pydicer.convert.data)": [[16, "pydicer.convert.data.ConvertData"]], "add_entry() (pydicer.convert.data.convertdata method)": [[16, "pydicer.convert.data.ConvertData.add_entry"]], "convert() (pydicer.convert.data.convertdata method)": [[16, "pydicer.convert.data.ConvertData.convert"]], "convert_dicom_headers() (in module pydicer.convert.headers)": [[16, "pydicer.convert.headers.convert_dicom_headers"]], "convert_dicom_to_nifti_pt() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.convert_dicom_to_nifti_pt"]], "convert_rtstruct() (in module pydicer.convert.rtstruct)": [[16, "pydicer.convert.rtstruct.convert_rtstruct"]], "get_object_type() (in module pydicer.convert.data)": [[16, "pydicer.convert.data.get_object_type"]], "get_physical_values_pt() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_physical_values_pt"]], "get_sitk_volume_from_np() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_sitk_volume_from_np"]], "get_suv_from_bqml() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_suv_from_bqml"]], "get_suv_philips() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_suv_philips"]], "handle_missing_slice() (in module pydicer.convert.data)": [[16, "pydicer.convert.data.handle_missing_slice"]], "is_approx_equal() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.is_approx_equal"]], "link_via_frame_of_reference() (in module pydicer.convert.data)": [[16, "pydicer.convert.data.link_via_frame_of_reference"]], "pydicer.convert.data": [[16, "module-pydicer.convert.data"]], "pydicer.convert.headers": [[16, "module-pydicer.convert.headers"]], "pydicer.convert.pt": [[16, "module-pydicer.convert.pt"]], "pydicer.convert.rtstruct": [[16, "module-pydicer.convert.rtstruct"]], "write_nrrd_from_mask_directory() (in module pydicer.convert.rtstruct)": [[16, "pydicer.convert.rtstruct.write_nrrd_from_mask_directory"]], "preparedataset (class in pydicer.dataset.preparation)": [[17, "pydicer.dataset.preparation.PrepareDataset"]], "structureset (class in pydicer.dataset.structureset)": [[17, "pydicer.dataset.structureset.StructureSet"]], "add_object_to_dataset() (pydicer.dataset.preparation.preparedataset method)": [[17, "pydicer.dataset.preparation.PrepareDataset.add_object_to_dataset"]], "get_mapped_structure_name() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.get_mapped_structure_name"]], "get_mapping_for_structure_set() (in module pydicer.dataset.structureset)": [[17, "pydicer.dataset.structureset.get_mapping_for_structure_set"]], "get_standardised_structure_name() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.get_standardised_structure_name"]], "get_unmapped_structures() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.get_unmapped_structures"]], "items() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.items"]], "keys() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.keys"]], "prepare() (pydicer.dataset.preparation.preparedataset method)": [[17, "pydicer.dataset.preparation.PrepareDataset.prepare"]], "prepare_from_dataframe() (pydicer.dataset.preparation.preparedataset method)": [[17, "pydicer.dataset.preparation.PrepareDataset.prepare_from_dataframe"]], "pydicer.dataset.functions": [[17, "module-pydicer.dataset.functions"]], "pydicer.dataset.preparation": [[17, "module-pydicer.dataset.preparation"]], "pydicer.dataset.structureset": [[17, "module-pydicer.dataset.structureset"]], "rt_latest_dose() (in module pydicer.dataset.functions)": [[17, "pydicer.dataset.functions.rt_latest_dose"]], "rt_latest_struct() (in module pydicer.dataset.functions)": [[17, "pydicer.dataset.functions.rt_latest_struct"]], "values() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.values"]], "add_dose_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_dose_object"]], "add_image_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_image_object"]], "add_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_object"]], "add_structure_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_structure_object"]], "get_available_mhub_models() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.get_available_mhub_models"]], "get_linked_for_and_ref_uid() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.get_linked_for_and_ref_uid"]], "get_segmentation_log_path() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.get_segmentation_log_path"]], "load_output_nifti() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.load_output_nifti"]], "pydicer.generate.models": [[18, "module-pydicer.generate.models"]], "pydicer.generate.object": [[18, "module-pydicer.generate.object"]], "pydicer.generate.segmentation": [[18, "module-pydicer.generate.segmentation"]], "read_all_segmentation_logs() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.read_all_segmentation_logs"]], "read_segmentation_log() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.read_segmentation_log"]], "run_mhub_model() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.run_mhub_model"]], "run_total_segmentator() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.run_total_segmentator"]], "segment_dataset() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.segment_dataset"]], "segment_image() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.segment_image"]], "write_autoseg_log() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.write_autoseg_log"]], "dicompacsinput (class in pydicer.input.pacs)": [[20, "pydicer.input.pacs.DICOMPACSInput"]], "filesysteminput (class in pydicer.input.filesystem)": [[20, "pydicer.input.filesystem.FileSystemInput"]], "orthancinput (class in pydicer.input.orthanc)": [[20, "pydicer.input.orthanc.OrthancInput"]], "tciainput (class in pydicer.input.tcia)": [[20, "pydicer.input.tcia.TCIAInput"]], "testinput (class in pydicer.input.test)": [[20, "pydicer.input.test.TestInput"]], "webinput (class in pydicer.input.web)": [[20, "pydicer.input.web.WebInput"]], "adapt_dataset_from_bytes() (in module pydicer.input.orthanc)": [[20, "pydicer.input.orthanc.adapt_dataset_from_bytes"]], "fetch_data() (pydicer.input.orthanc.orthancinput method)": [[20, "pydicer.input.orthanc.OrthancInput.fetch_data"]], "fetch_data() (pydicer.input.pacs.dicompacsinput method)": [[20, "pydicer.input.pacs.DICOMPACSInput.fetch_data"]], "fetch_data() (pydicer.input.tcia.tciainput method)": [[20, "pydicer.input.tcia.TCIAInput.fetch_data"]], "fetch_data() (pydicer.input.web.webinput method)": [[20, "pydicer.input.web.WebInput.fetch_data"]], "pydicer.input.filesystem": [[20, "module-pydicer.input.filesystem"]], "pydicer.input.orthanc": [[20, "module-pydicer.input.orthanc"]], "pydicer.input.pacs": [[20, "module-pydicer.input.pacs"]], "pydicer.input.tcia": [[20, "module-pydicer.input.tcia"]], "pydicer.input.test": [[20, "module-pydicer.input.test"]], "pydicer.input.web": [[20, "module-pydicer.input.web"]], "nnunetdataset (class in pydicer.dataset.nnunet)": [[21, "pydicer.dataset.nnunet.NNUNetDataset"]], "add_testing_cases() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.add_testing_cases"]], "check_dataset() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_dataset"]], "check_duplicates_train_test() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_duplicates_train_test"]], "check_overlapping_structures() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_overlapping_structures"]], "check_structure_names() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_structure_names"]], "generate_training_scripts() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.generate_training_scripts"]], "prep_label_map_from_one_hot() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.prep_label_map_from_one_hot"]], "prepare_dataset() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.prepare_dataset"]], "split_dataset() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.split_dataset"]], "train() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.train"]], "preprocessdata (class in pydicer.preprocess.data)": [[22, "pydicer.preprocess.data.PreprocessData"]], "preprocess() (pydicer.preprocess.data.preprocessdata method)": [[22, "pydicer.preprocess.data.PreprocessData.preprocess"]], "pydicer.preprocess.data": [[22, "module-pydicer.preprocess.data"]], "scan_file() (pydicer.preprocess.data.preprocessdata method)": [[22, "pydicer.preprocess.data.PreprocessData.scan_file"]], "pydicer (class in pydicer.tool)": [[23, "pydicer.tool.PyDicer"]], "add_dose_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_dose_object"]], "add_image_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_image_object"]], "add_input() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_input"]], "add_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_object"]], "add_structure_name_mapping() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_structure_name_mapping"]], "add_structure_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_structure_object"]], "get_structures_linked_to_dose() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.get_structures_linked_to_dose"]], "preprocess() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.preprocess"]], "read_all_segmentation_logs() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_all_segmentation_logs"]], "read_converted_data() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_converted_data"]], "read_preprocessed_data() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_preprocessed_data"]], "read_quarantined_data() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_quarantined_data"]], "run_pipeline() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.run_pipeline"]], "segment_dataset() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.segment_dataset"]], "segment_image() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.segment_image"]], "set_verbosity() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.set_verbosity"]], "update_logging() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.update_logging"]], "add_structure_name_mapping() (in module pydicer.utils)": [[24, "pydicer.utils.add_structure_name_mapping"]], "copy_doc() (in module pydicer.utils)": [[24, "pydicer.utils.copy_doc"]], "determine_dcm_datetime() (in module pydicer.utils)": [[24, "pydicer.utils.determine_dcm_datetime"]], "download_and_extract_zip_file() (in module pydicer.utils)": [[24, "pydicer.utils.download_and_extract_zip_file"]], "fetch_converted_test_data() (in module pydicer.utils)": [[24, "pydicer.utils.fetch_converted_test_data"]], "get_iterator() (in module pydicer.utils)": [[24, "pydicer.utils.get_iterator"]], "get_structures_linked_to_dose() (in module pydicer.utils)": [[24, "pydicer.utils.get_structures_linked_to_dose"]], "hash_uid() (in module pydicer.utils)": [[24, "pydicer.utils.hash_uid"]], "load_dvh() (in module pydicer.utils)": [[24, "pydicer.utils.load_dvh"]], "load_object_metadata() (in module pydicer.utils)": [[24, "pydicer.utils.load_object_metadata"]], "map_structure_name() (in module pydicer.utils)": [[24, "pydicer.utils.map_structure_name"]], "parse_patient_kwarg() (in module pydicer.utils)": [[24, "pydicer.utils.parse_patient_kwarg"]], "pydicer.utils": [[24, "module-pydicer.utils"]], "read_converted_data() (in module pydicer.utils)": [[24, "pydicer.utils.read_converted_data"]], "read_preprocessed_data() (in module pydicer.utils)": [[24, "pydicer.utils.read_preprocessed_data"]], "read_simple_itk_image() (in module pydicer.utils)": [[24, "pydicer.utils.read_simple_itk_image"]], "visualisedata (class in pydicer.visualise.data)": [[25, "pydicer.visualise.data.VisualiseData"]], "pydicer.visualise.data": [[25, "module-pydicer.visualise.data"]], "visualise() (pydicer.visualise.data.visualisedata method)": [[25, "pydicer.visualise.data.VisualiseData.visualise"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["_examples/AutoSegmentation", "_examples/Configuration", "_examples/ConvertingData", "_examples/DatasetPreparation", "_examples/DoseMetrics", "_examples/GettingStarted", "_examples/ObjectGeneration", "_examples/Radiomics", "_examples/VisualiseData", "_examples/WorkingWithData", "_examples/WorkingWithStructures", "_examples/nnUNet", "analyse", "code_of_conduct", "config", "contributing", "convert", "dataset", "generate", "index", "input", "nnunet", "preprocess", "tool", "utils", "visualise"], "filenames": ["_examples/AutoSegmentation.ipynb", "_examples/Configuration.ipynb", "_examples/ConvertingData.ipynb", "_examples/DatasetPreparation.ipynb", "_examples/DoseMetrics.ipynb", "_examples/GettingStarted.ipynb", "_examples/ObjectGeneration.ipynb", "_examples/Radiomics.ipynb", "_examples/VisualiseData.ipynb", "_examples/WorkingWithData.ipynb", "_examples/WorkingWithStructures.ipynb", "_examples/nnUNet.ipynb", "analyse.rst", "code_of_conduct.rst", "config.rst", "contributing.rst", "convert.rst", "dataset.rst", "generate.rst", "index.rst", "input.rst", "nnunet.rst", "preprocess.rst", "tool.rst", "utils.rst", "visualise.rst"], "titles": ["Auto-segmentation Inference & Analysis", "Configuration", "Converting Data", "Dataset Preparation", "Dose Metrics", "Getting Started", "Generating Data Objects", "Compute Radiomics", "Visualise Data", "Working with Data", "Working with Structures", "nnUNet Data Preparation", "Analyse", "Code of Conduct", "Configuration", "Contributing", "Conversion", "Dataset Preparation", "Generation", "PyDicer: PYthon Dicom Image ConvertER", "Input", "nnUNet", "Preprocessing", "PyDicer", "Utils", "Visualisation"], "terms": {"A": [0, 1, 2, 3, 5, 10, 11, 12, 13, 15, 16, 18, 19, 20, 21, 23, 25], "common": [0, 5, 10, 12, 13, 19], "task": [0, 3, 6, 11, 19], "when": [0, 1, 3, 6, 7, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25], "work": [0, 2, 3, 4, 6, 7, 8, 11, 12, 14, 16, 17, 18, 19, 22, 24, 25], "medic": [0, 9, 19], "imag": [0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 16, 17, 18, 21, 22, 23, 24], "data": [0, 1, 10, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25], "an": [0, 1, 3, 6, 9, 11, 13, 16, 17, 18, 19, 21, 22, 23, 24], "model": [0, 3, 9, 11, 21], "your": [0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 15, 19], "dataset": [0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 18, 19, 20, 21, 23, 24, 25], "If": [0, 1, 2, 3, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 23, 24], "you": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 19, 21, 23], "have": [0, 2, 3, 6, 7, 10, 11, 12, 13, 17, 18, 21, 23], "manual": 0, "definit": 0, "same": [0, 1, 2, 11, 12, 21], "structur": [0, 1, 2, 4, 5, 7, 8, 9, 12, 18, 21, 22, 23, 24], "avail": [0, 2, 3, 7, 10, 13, 15, 17, 18, 21, 23, 24], "typic": [0, 3, 19], "want": [0, 2, 3, 5, 6, 8, 9, 10, 21], "compar": [0, 12, 16], "produc": [0, 6, 8, 16, 19], "plot": [0, 4, 12, 19], "visualis": [0, 5, 6, 19, 23], "thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24], "exampl": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 23, 24], "notebook": [0, 4, 5, 7, 11], "guid": [0, 6, 10, 15, 19], "through": [0, 9, 11, 13, 17, 18, 21], "process": [0, 1, 2, 12, 19, 21, 23, 24], "those": [0, 4, 6, 7, 10, 13], "we": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13], "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24], "singl": [0, 13, 20], "base": [0, 3, 11, 17, 20, 24], "demonstr": [0, 2, 4, 5, 6, 7, 9, 10, 11, 13], "purpos": [0, 3, 4, 6, 7, 9, 10, 11, 19], "warn": [0, 1, 2, 6, 7, 8, 10, 11, 23], "The": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "result": [0, 5, 7, 12, 16, 18, 23], "ar": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 19, 21, 23, 24, 25], "poor": 0, "i": [0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24], "optimis": 0, "runtim": 0, "pure": 0, "provid": [0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 23, 24, 25], "how": [0, 2, 3, 5, 6, 10, 11], "analys": [0, 2, 3, 4, 7, 10, 19, 21, 23], "1": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 21], "try": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "from": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], "import": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 19, 23], "except": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 23], "importerror": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18], "pip": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19], "instal": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 18], "o": [0, 11], "pathlib": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 19, 22, 23, 24, 25], "path": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], "simpleitk": [0, 2, 6, 9, 10, 16, 18, 19, 23, 24], "sitk": [0, 6, 10, 16, 18, 21, 23], "platipi": [0, 19], "registr": 0, "util": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 21], "apply_transform": 0, "linear": 0, "linear_registr": 0, "deform": 0, "fast_symmetric_forces_demons_registr": 0, "fetch_converted_test_data": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 24], "gener": [0, 3, 9, 11, 12, 17, 19, 21, 23, 25], "segment_imag": [0, 18, 23], "read_all_segmentation_log": [0, 18, 23], "compute_contour_similarity_metr": [0, 12], "get_all_similarity_metrics_for_dataset": [0, 12], "prepare_similarity_metric_analysi": [0, 12], "For": [0, 3, 4, 5, 11, 13, 15, 18, 19, 23], "lctsc": [0, 1, 7, 9, 10, 11, 24], "test": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20, 21, 24], "which": [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24], "ha": [0, 3, 4, 6, 7, 8, 9, 10, 11, 18, 21, 23, 24], "alreadi": [0, 4, 6, 7, 9, 10, 11, 12, 16, 18, 22, 23, 24, 25], "been": [0, 2, 3, 4, 7, 9, 10, 11, 12, 17, 18, 21, 23, 24], "convert": [0, 1, 3, 4, 5, 6, 7, 10, 11, 12, 16, 17, 18, 20, 23, 24, 25], "also": [0, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 17, 19, 21, 23, 24], "initialis": [0, 8, 9, 10], "our": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 19], "object": [0, 1, 2, 3, 8, 10, 12, 14, 16, 17, 19, 22, 23, 24, 25], "2": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "working_directori": [0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "lctsc_autoseg": 0, "sinc": [0, 3, 18, 19, 21, 23], "must": [0, 2, 4, 11, 12, 15, 18, 23, 24], "split": [0, 21], "select": [0, 3, 12, 17, 19], "one": [0, 2, 3, 5, 10, 11, 16, 17, 18, 23], "case": [0, 1, 3, 11, 21], "remain": [0, 3], "valid": [0, 1, 3], "set": [0, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24], "modul": [0, 1, 2, 3, 4, 6, 7, 8, 10, 11, 18, 19], "creat": [0, 2, 3, 10, 11, 15, 19, 21], "subset": [0, 3, 7, 11, 17, 21], "3": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19], "df": [0, 2, 3, 6, 9, 10, 11, 12, 17], "read_converted_data": [0, 2, 3, 6, 9, 10, 11, 23, 24], "specifi": [0, 3, 4, 9, 10, 11, 13, 14, 17, 21, 23, 24], "patient": [0, 2, 3, 4, 5, 7, 9, 10, 11, 12, 16, 17, 18, 20, 21, 23, 24, 25], "id": [0, 2, 6, 7, 9, 10, 11, 12, 15, 16, 17, 18, 20, 21, 23, 24, 25], "atlas_dataset": 0, "atlas_cas": 0, "train": [0, 3, 9, 10, 21], "s1": [0, 7, 9, 10, 11], "001": [0, 9, 10, 11], "df_atla": 0, "patient_id": [0, 2, 3, 6, 9, 10, 11, 18, 20, 22, 23, 24], "And": [0, 6], "make": [0, 13, 15, 19], "up": [0, 1, 5, 9, 17], "validation_dataset": 0, "df_valid": 0, "two": [0, 1, 3, 11, 16], "prepare_from_datafram": [0, 3, 17], "now": [0, 2, 3, 6, 10, 11], "readi": [0, 2, 3, 11, 17, 19, 21], "simpl": 0, "u": [0, 9, 13], "tool": [0, 1, 3, 11, 15, 19, 23], "In": [0, 2, 3, 4, 6, 7, 9, 10, 11, 19], "real": [0, 3, 10, 22], "world": [0, 3, 10, 22], "scenario": [0, 3, 21], "own": [0, 3], "wish": [0, 12], "appli": [0, 3, 6, 9, 10, 13], "should": [0, 10, 11, 12, 15, 17, 18, 21, 23], "integr": [0, 6], "accept": [0, 3, 13, 18, 23], "return": [0, 3, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24], "dictionari": [0, 10, 12, 16, 18, 23, 24], "To": [0, 3, 9, 15], "get": [0, 2, 9, 14, 16, 17, 18, 24], "start": [0, 2, 3, 9, 18, 21], "recommend": [0, 6, 9, 21], "totalsegment": [0, 18, 23], "ct": [0, 2, 3, 6, 9, 11, 18, 19, 21, 23], "check": [0, 2, 5, 6, 9, 10, 15, 18, 19, 21, 23], "out": [0, 1, 3, 5, 6, 9, 10, 11, 21, 23], "run_total_segment": [0, 18, 23], "4": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "def": [0, 3, 18, 23, 24], "single_atlas_segment": 0, "img": [0, 6, 7, 9, 18, 23], "arg": [0, 23, 24], "dict": [0, 7, 12, 16, 17, 18, 22, 23, 24], "load": [0, 1, 4, 6, 12, 18, 23, 24], "atlas_img_row": 0, "modal": [0, 2, 3, 6, 9, 10, 11, 16, 18, 20, 21, 22, 23], "iloc": [0, 3, 6, 9, 10], "0": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 18, 23], "atlas_img": 0, "readimag": [0, 6, 18, 23], "str": [0, 6, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25], "joinpath": [0, 2, 5, 6, 18, 19, 23], "nii": [0, 6, 18, 23], "gz": [0, 6, 18, 23], "atlas_structur": 0, "atlas_struct_row": 0, "rtstruct": [0, 1, 2, 3, 4, 6, 9, 10, 11, 19, 22], "struct_path": 0, "glob": [0, 18, 23], "struct_nam": [0, 24], "name": [0, 3, 5, 8, 9, 12, 14, 17, 18, 19, 23, 24, 25], "replac": [0, 12, 18, 23], "rigid": 0, "align": [0, 13], "input": [0, 2, 3, 5, 18, 19, 22, 23], "img_ct_atlas_reg_linear": 0, "tfm_linear": 0, "fixed_imag": 0, "moving_imag": 0, "reg_method": 0, "mean_squar": 0, "gradient_desc": 0, "shrink_factor": 0, "smooth_sigma": 0, "sampling_r": 0, "number_of_iter": 0, "50": [0, 4, 5, 7, 9, 12, 23], "fast": [0, 8], "img_ct_atlas_reg_dir": 0, "tfm_dir": 0, "dvf": 0, "ncore": 0, "isotropic_resampl": 0, "true": [0, 1, 12, 16, 18, 19, 21, 22, 23, 24, 25], "resolution_stag": 0, "iteration_stag": 0, "20": [0, 5, 6, 8, 18, 23], "combin": 0, "transform": 0, "tfm_combin": 0, "compositetransform": 0, "auto_segment": 0, "": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 23, 24], "reference_imag": 0, "segment_dataset": [0, 18, 23], "over": [0, 2, 5, 6, 10, 24], "all": [0, 1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "pass": [0, 2, 7, 9, 11, 12, 17, 21], "so": [0, 2, 3, 7, 9, 11, 19, 21], "onli": [0, 1, 3, 5, 6, 7, 8, 10, 11, 12, 17, 19, 21, 22, 23, 24], "5": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "segment_id": [0, 12, 18, 23], "dataset_nam": [0, 3, 5, 11, 12, 17, 18, 19, 21, 23, 24, 25], "100": [0, 2, 4, 5, 6, 7, 8, 9, 16], "9": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19], "00": [0, 2, 4, 5, 6, 8], "59": [0, 5], "lt": [0, 2, 4, 5, 6, 8], "6": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 24], "66": [0, 4, 5], "can": [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 18, 21, 23], "snapshot": [0, 6, 25], "forc": [0, 6, 8, 12, 16, 18, 22, 23, 25], "fals": [0, 1, 3, 6, 8, 11, 12, 16, 18, 21, 23, 24], "29": [0, 2, 4, 5, 8, 19], "09": [0, 5, 7], "22object": 0, "after": [0, 3, 5, 8, 11, 21, 23], "across": [0, 4, 18, 23], "confirm": [0, 3, 10, 11], "everyth": [0, 11], "went": 0, "well": [0, 3, 5, 7, 13, 19, 24], "let": [0, 3, 6, 11], "inspect": [0, 7, 8, 12, 19], "someth": 0, "wrong": [0, 2, 8, 14, 18, 23], "help": [0, 3, 6, 9, 11, 19], "debug": [0, 1, 7, 10, 23], "issu": [0, 2, 10, 13, 19], "7": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "datafram": [0, 4, 5, 7, 9, 11, 12, 16, 17, 18, 19, 21, 22, 23, 24], "df_log": 0, "img_id": [0, 6], "start_tim": [0, 18], "end_tim": [0, 18], "total_time_second": 0, "success_flag": 0, "error": [0, 1, 2, 16, 18, 19, 23, 24], "007": [0, 9, 10, 11], "5adf40": [0, 7, 9, 11], "2024": [0, 2, 19], "12": [0, 2, 3, 5, 6, 7, 9, 11], "16": [0, 2, 3, 5, 6, 8, 9, 11], "10": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 19, 23], "42": [0, 5, 7], "07": [0, 2, 3, 4, 5, 7, 8], "045392": 0, "13": [0, 2, 3, 5, 6, 9, 11], "676024": 0, "630632": 0, "nan": [0, 2, 3, 5, 7, 9, 11], "006": [0, 9, 10, 11], "88c5ef": [0, 7, 9, 11], "699072": 0, "235014": 0, "535942": 0, "102": [0, 9, 10, 11], "914d57": [0, 7, 9, 11], "256636": 0, "27": [0, 5, 6, 7], "058966": 0, "802330": 0, "002": [0, 9, 10, 11], "aa38e6": [0, 7, 9, 11], "082782": 0, "34": [0, 5, 7, 8], "491220": 0, "408438": 0, "008": [0, 9, 10, 11], "dd0026": [0, 7, 9, 11], "512905": 0, "40": [0, 5, 8, 9, 23], "757066": 0, "244161": 0, "004": [0, 9, 10, 11], "d91c84": [0, 7, 9, 11], "781058": 0, "47": [0, 4, 5], "759816": 0, "978758": 0, "005": [0, 9, 10, 11], "738c1a": [0, 7, 9, 11], "782191": 0, "53": [0, 2, 5, 7], "795442": 0, "013251": 0, "101": [0, 7, 9, 10, 11], "666be6": [0, 7, 9, 11], "818836": 0, "43": [0, 4, 5], "146427": 0, "327591": 0, "8": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 19], "003": [0, 9, 10, 11], "2bf2f9": [0, 7, 9, 11], "169444": 0, "06": [0, 4, 5, 7, 8], "939233": 0, "769789": 0, "some": [0, 3, 6, 7, 8, 9, 10, 11, 15, 19, 21, 24], "panda": [0, 2, 3, 4, 5, 7, 9, 17, 18, 19, 23], "magic": 0, "stat": 0, "df_success": 0, "agg_stat": 0, "mean": [0, 4, 5, 7, 9], "std": [0, 23], "max": 0, "min": 0, "count": 0, "groupbi": [0, 3], "agg": 0, "634544": 0, "419255": 0, "first": [0, 1, 2, 3, 5, 7, 10, 12, 23, 24], "contain": [0, 2, 3, 4, 7, 12, 16, 17, 18, 21, 22, 23, 24], "df_target": [0, 12], "separ": [0, 10], "df_refer": [0, 12], "df_struct": [0, 10], "hashed_uid": [0, 2, 3, 6, 8, 9, 11, 18, 23], "startswith": 0, "f": [0, 1, 6, 7, 9, 10, 11], "atlas_": 0, "sop_instance_uid": [0, 2, 3, 6, 9, 11, 22], "series_uid": [0, 2, 3, 6, 9, 11, 22], "for_uid": [0, 2, 3, 6, 9, 11, 16, 18, 22, 23], "referenced_sop_instance_uid": [0, 2, 3, 6, 9, 11, 12, 18, 23], "14519": [0, 2, 3, 6, 9, 11], "7014": [0, 9, 11], "4598": [0, 9, 11], "284338872489": [0, 9, 11], "ed6686": [0, 7, 9, 11], "187709044743": [0, 9, 11], "168227681755": [0, 9, 11], "161109536301": [0, 9, 11], "ceb111": [0, 7, 9, 11], "325217978839": [0, 9, 11], "263565217029": [0, 9, 11], "110977663386": [0, 9, 11], "6c6ea4": [0, 7, 9, 11], "408067568497": [0, 9, 11], "235489581364": [0, 9, 11], "291449913947": [0, 9, 11], "f036b8": [0, 7, 9, 10, 11], "145984743865": [0, 9, 11], "318848546630": [0, 9, 11], "225487254421": [0, 9, 11], "48a970": [0, 7, 9, 11], "243364093992": [0, 9, 11], "217118546740": [0, 9, 11], "595315284787": [0, 9, 11], "61758b": [0, 7, 9, 11], "313160975008": [0, 9, 11], "141349678572": [0, 9, 11], "19": [0, 5, 6, 7, 9, 11], "214803404117": [0, 9, 11], "68d663": [0, 7, 9, 11], "964812114328": [0, 9, 11], "140943693489": [0, 9, 11], "22": [0, 4, 5, 8], "929007819506": [0, 9, 11], "cc682f": [0, 7, 9, 11], "280355341349": [0, 9, 11], "171234424242": [0, 9, 11], "333558838494": [0, 9, 11], "25": [0, 4, 5, 6], "127494043495": [0, 9, 11], "8e34f9": [0, 7, 9, 11], "803594135292": [0, 9, 11], "159497309342": [0, 9, 11], "11": [0, 2, 3, 4, 5, 6, 9, 11], "atlas_5adf40": 0, "atlas_88c5ef": 0, "atlas_914d57": 0, "atlas_aa38e6": 0, "14": [0, 2, 3, 5, 6, 7, 8, 9, 11], "atlas_dd0026": 0, "17": [0, 2, 3, 5, 8, 9, 11], "atlas_d91c84": 0, "atlas_738c1a": 0, "23": [0, 5, 7, 8], "atlas_666be6": 0, "26": [0, 5, 6, 7], "atlas_2bf2f9": 0, "target": [0, 12, 19], "refer": [0, 2, 3, 8, 9, 10, 12, 16, 18, 23, 24], "dice": 0, "coeffici": 0, "dsc": [0, 12], "hausdorff": 0, "distanc": [0, 9], "surfac": 0, "match": [0, 3, 12, 17, 18, 20, 23], "exactli": [0, 5, 11, 21], "map": [0, 7, 11, 12, 17, 21, 23, 24], "standardis": [0, 10, 17, 19, 23, 24], "prior": [0, 10, 12, 21], "add": [0, 2, 5, 9, 11, 15, 16, 17, 18, 19, 21, 23], "mapping_id": [0, 10, 11, 12, 17, 21, 23, 24], "nnunet_lctsc": [0, 11], "esophagu": [0, 7, 10, 11], "heart": [0, 7, 10, 11], "lung_l": [0, 7, 10, 11], "l_lung": [0, 7, 10, 11], "lung_left": [0, 7, 10, 11], "lung_r": [0, 7, 10, 11], "lung_right": [0, 7, 10, 11], "spinalcord": [0, 7, 10, 11], "sc": [0, 7, 10, 11], "add_structure_name_map": [0, 10, 11, 23, 24], "compute_metr": [0, 12], "hausdorffdist": [0, 12], "meansurfacedist": [0, 12], "surfacedsc": [0, 12], "31": [0, 5], "here": [0, 2, 3, 4, 5, 9, 10, 11, 15, 19], "output": [0, 1, 2, 3, 5, 7, 10, 11, 12, 16, 18, 19, 23, 24, 25], "note": [0, 3, 5, 6, 11, 21], "fail": 0, "exclud": [0, 12], "df_metric": 0, "structure_mapping_id": [0, 12], "aggreg": 0, "valu": [0, 1, 3, 4, 6, 7, 8, 9, 10, 12, 14, 16, 17, 18, 23, 24], "023485": 0, "039155": 0, "000000": [0, 4], "109864": 0, "86": [0, 5], "016542": 0, "242434": 0, "51": [0, 5], "074932": 0, "138": 0, "589307": 0, "829617": 0, "069703": 0, "329453": 0, "88": [0, 5], "431997": 0, "044144": 0, "076819": 0, "222843": 0, "245349": 0, "213440": 0, "485516": 0, "81": 0, "796660": 0, "28": [0, 3, 4, 5], "022026": 0, "45": [0, 2, 4, 5, 8], "554259": 0, "127": [0, 5, 7], "344050": 0, "477665": 0, "412489": 0, "660061": 0, "71": [0, 4, 5], "395360": 0, "136241": 0, "112819": 0, "297727": 0, "345206": 0, "227535": 0, "042621": 0, "665717": 0, "107": 0, "038653": 0, "328493": 0, "67": [0, 5, 7, 8], "318771": 0, "166": 0, "238581": 0, "33": [0, 2, 5, 6, 7], "207495": 0, "589999": 0, "15": [0, 2, 3, 5, 6, 7, 9, 11], "643577": 0, "64": [0, 5], "321409": 0, "261660": 0, "173089": 0, "034036": 0, "567455": 0, "435620": 0, "211995": 0, "120374": 0, "654082": 0, "93": [0, 5], "095879": 0, "30": [0, 5, 6, 8, 23], "999991": 0, "58": [0, 2, 5], "515670": 0, "158": 0, "412996": 0, "582301": 0, "213033": 0, "244833": 0, "727983": 0, "302265": 0, "149149": 0, "084824": 0, "468548": 0, "059047": 0, "133917": 0, "398152": 0, "062020": 0, "37": [0, 4, 5], "777640": 0, "65": [0, 5], "512324": 0, "153": 0, "971275": 0, "480604": 0, "35": [0, 5, 8], "360977": 0, "644323": 0, "122": 0, "360613": 0, "086375": 0, "184924": 0, "543595": 0, "There": [0, 9], "variou": [0, 1, 7, 19, 23, 24, 25], "mai": [0, 1, 2, 3, 6, 7, 10, 11, 13, 15, 17], "follow": [0, 2, 3, 4, 6, 8, 10, 11, 13, 15, 19, 22], "sever": [0, 2, 3, 5, 9, 19], "serv": 0, "point": [0, 4, 12, 15, 23], "directori": [0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25], "tabl": [0, 9, 12], "csv": [0, 2, 3, 4, 5, 12, 19], "testdata_lctsc": [0, 1, 7, 9, 10, 11], "cell": [0, 2, 3, 4, 6, 7, 10, 11], "navig": [0, 3], "explor": 0, "analysis_output_directori": [0, 12], "mkdir": [0, 18, 19, 23], "parent": [0, 19], "exist_ok": [0, 19], "pydic": [1, 6, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25], "chang": [1, 5, 15, 23], "behaviour": 1, "get_config": [1, 14], "set_config": [1, 14], "function": [1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 15, 16, 18, 19, 20, 21, 22, 23, 24], "config": [1, 14, 18, 23], "respect": [1, 4, 13], "logging_verbos": 1, "print": [1, 6, 9, 10, 11], "current": [1, 9, 11, 19, 21], "level": [1, 10, 13, 17, 23, 24], "new": [1, 6, 8, 15, 18, 23], "standard": [1, 2, 9, 18, 20, 23, 24], "indic": [1, 9, 11, 18, 21, 23], "python": [1, 10, 15, 18, 21, 23], "built": [1, 3], "displai": [1, 3, 5, 7, 23, 24], "bar": [1, 23, 24], "notset": [1, 11], "info": [1, 7, 10, 11, 23], "determin": [1, 3, 10, 11, 13, 18, 21, 24], "whether": [1, 16], "link": [1, 3, 4, 5, 7, 8, 12, 16, 17, 18, 19, 23, 24], "via": [1, 11, 13, 15], "uid": [1, 8, 9, 16, 18, 23, 24], "more": [1, 2, 3, 5, 6, 8, 9, 11, 12, 15, 16, 18, 19, 21], "stabl": 1, "exist": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 21, 23, 24, 25], "for_fallback_linkag": 1, "preprocess": [1, 5, 16, 19, 23, 24], "otherwis": [1, 3, 13, 17, 22, 23, 24], "ani": [1, 7, 8, 11, 13, 15, 17, 19, 21], "dicom": [1, 2, 3, 5, 6, 7, 9, 10, 12, 16, 17, 18, 20, 22, 23, 24], "enforce_dcm_ext": 1, "detect": [1, 2, 11, 21], "sent": 1, "quarantin": [1, 5, 19, 23], "interp_missing_slic": 1, "locat": [1, 2, 5, 9, 19, 22, 23, 24], "differ": [1, 2, 5, 6, 10, 11, 13, 21], "pixel": [1, 2, 9, 16], "found": [1, 3, 4, 7, 10, 11, 12, 17, 18, 23, 24], "ignore_duplicate_slic": 1, "rais": [1, 12, 14, 16, 17, 18, 21, 23, 24], "addit": [1, 3, 4, 11, 17, 19], "allow": [1, 13, 21], "easili": [1, 5, 9, 15], "3d": 1, "slicer": 1, "take": [1, 2, 3, 6, 11, 13, 15], "disk": 1, "space": [1, 9, 13, 16], "time": [1, 5, 8, 9, 13, 16, 18, 21, 24], "generate_nrrd": 1, "defin": [1, 2, 9, 10, 12, 17, 18, 19, 21, 23], "matplotlib": [1, 16], "save": [1, 3, 6, 10, 12, 14, 16, 18, 23], "nrrd_colormap": 1, "rainbow": [1, 16], "convers": [2, 5, 8, 19, 23], "These": [2, 3, 9], "essenti": 2, "step": [2, 5, 7, 19, 23], "befor": [2, 4, 11, 15, 21], "testinput": [2, 5, 19, 20], "As": [2, 3, 9], "class": [2, 5, 7, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25], "download": [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 24], "sampl": [2, 5, 9], "other": [2, 3, 5, 13, 23, 24], "d": [2, 3, 4, 5, 9, 12, 13, 17, 19, 24], "like": [2, 3, 5, 7, 9, 13, 15, 17, 18, 23], "retriev": [2, 5], "somewher": [2, 5], "els": [2, 5], "see": [2, 3, 5, 6, 7, 9, 10, 11, 12, 13, 15, 18, 19, 21], "doc": [2, 5, 15, 24], "inform": [2, 3, 5, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22], "most": 2, "commonli": 2, "file": [2, 3, 4, 5, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25], "store": [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18, 19, 23, 24], "within": [2, 8, 9, 10, 12, 13, 15, 18, 19, 21, 23], "folder": [2, 3, 5, 6, 11, 17, 18, 21, 23, 24], "system": [2, 3, 4, 5, 9, 11, 18, 19, 21, 23], "simpli": [2, 3, 8, 9, 10], "add_input": [2, 5, 19, 23], "dicom_directori": [2, 5, 19], "test_input": [2, 5, 19], "fetch_data": [2, 5, 19, 20], "With": [2, 10], "crawl": 2, "index": 2, "requir": [2, 5, 9, 10, 11, 15, 18, 23, 24], "1309": [2, 5], "03": [2, 3, 5, 8], "413": 2, "80file": 2, "wa": [2, 3, 11, 13, 16, 17, 18, 19, 22, 23, 24], "dure": [2, 8, 13], "row": [2, 3, 4, 5, 7, 9, 10, 12, 17, 18, 22, 23, 24], "df_preprocess": [2, 16], "read_preprocessed_data": [2, 23, 24], "head": [2, 4, 7, 15], "study_uid": [2, 22], "sop_class_uid": [2, 16, 22], "file_path": [2, 16, 22], "slice_loc": [2, 16, 22], "referenced_uid": [2, 22], "referenced_for_uid": [2, 22], "1185": 2, "hnscc": [2, 3, 4, 5, 6, 8, 24], "01": [2, 3, 4, 5, 6, 8], "0019": [2, 3, 4, 5, 6], "1706": [2, 3, 6], "8040": [2, 3, 6], "797724702538": 2, "233510441938": [2, 3], "840": 2, "10008": 2, "418136430763": [2, 3, 6], "290727775603": [2, 3, 6], "04": [2, 7, 8], "1998": [2, 3], "n": 2, "807": 2, "1242": 2, "206018114826": 2, "804": 2, "1186": 2, "100785615013": 2, "801": 2, "1209": 2, "113351005230": 2, "798": 2, "1230": 2, "112029189313": 2, "795": 2, "nifti": [2, 5, 16, 18, 19, 24], "format": [2, 3, 5, 8, 11, 12, 15, 16, 19], "run": [2, 3, 6, 11, 12, 15, 18, 19, 21, 23, 25], "begin": [2, 21], "while": [2, 6, 15], "look": [2, 6, 8, 11, 17], "insid": [2, 6], "being": [2, 8, 10, 11, 17, 18, 23], "notic": [2, 3, 10], "each": [2, 3, 4, 5, 6, 7, 9, 10, 12, 18, 21, 22, 23], "track": [2, 3, 18, 19, 23], "throughout": [2, 24], "24": [2, 4, 5, 6, 7, 8], "21": [2, 5, 6, 8], "52": [2, 5], "02": [2, 3, 6, 8], "tmp": 2, "build": [2, 3, 23], "itk": 2, "prefix": [2, 16], "includ": [2, 3, 5, 12, 13, 15, 19, 23], "itkimageseriesread": 2, "hxx": 2, "line": [2, 15], "477": 2, "imageseriesread": 2, "0x5624d21c1b90": 2, "non": 2, "uniform": [2, 5, 7], "miss": [2, 11, 16, 21], "slice": [2, 9, 16, 22], "maximum": [2, 7], "nonuniform": 2, "000641026": 2, "08": [2, 5, 7], "54": [2, 5], "onc": [2, 3, 6, 9, 10, 11, 15, 25], "descript": [2, 3, 5, 9, 17], "column": [2, 4, 5, 7, 9, 22], "charact": [2, 9, 24], "hexidecim": 2, "hash": [2, 8, 9, 24], "associ": [2, 3], "seriesinstanceuid": [2, 22], "identifi": 2, "consic": 2, "represent": [2, 9], "belong": [2, 23, 24], "where": [2, 3, 5, 6, 10, 11, 16, 19, 20, 23, 24], "240263316258": [2, 3, 6], "72b0f9": [2, 3], "0199": [2, 3, 6, 8], "261759476368": [2, 3], "870916135819": [2, 3, 6], "264264397186": [2, 3, 6], "c16e76": [2, 3, 6], "rtdose": [2, 3, 4, 6, 17, 19, 22, 24], "233527028792": [2, 3, 6], "287865632112": [2, 3, 6], "dose": [2, 5, 8, 10, 12, 17, 18, 19, 23, 24], "664e96": [2, 3], "rtplan": [2, 3, 18, 19, 22, 23], "137463901488": [2, 3], "166429645421": [2, 3, 6], "plan": [2, 3, 6, 17, 18, 23], "06e49c": [2, 3, 6], "243934637013": [2, 3, 6], "334001018535": [2, 3, 6], "c4ffd0": [2, 3], "0176": [2, 3, 6], "151938046710": [2, 3], "120880328745": [2, 3, 6], "107072817915": [2, 3, 6], "8e0da9": [2, 3], "176143398282": [2, 3], "216161306702": [2, 3, 6], "133948865586": [2, 3, 6], "ec4aec": [2, 3], "192899726585": [2, 3], "469610481459": [2, 3, 6], "33c44a": [2, 3], "244362210503": [2, 3], "310630617866": [2, 3, 6], "169033525924": [2, 3, 6], "833a74": [2, 3, 6], "279793773343": [2, 3, 6], "706719210726": [2, 3, 6], "470253980284": [2, 3, 6], "267291308489": [2, 3, 6], "bf3fba": [2, 3, 6], "283706688235": [2, 3, 6], "566662631858": [2, 3, 6], "173917268454": [2, 3, 6], "6f7db7": [2, 3], "120111576192": [2, 3], "323156708629": [2, 3, 6], "a6b346": [2, 3], "318927873561": [2, 3], "403955456521": [2, 3, 6], "cbbf5b": [2, 3, 6], "276897558084": [2, 3, 6], "6d2934": [2, 3, 6], "495627765798": [2, 3, 6], "b281ea": [2, 3, 5], "242809596262": [2, 3, 6], "309e1a": [2, 3, 4, 5, 6], "777975715563": [2, 3, 6], "254865609982": [2, 3, 6], "57b99f": [2, 3], "202542618630": [2, 3], "168221415040": [2, 3, 6], "7cdcd9": [2, 3, 4, 5, 6], "103450757970": [2, 3, 6], "anyth": 2, "goe": 2, "either": [2, 7, 21, 24], "problemat": 2, "copi": [2, 24], "It": [2, 19], "good": 2, "idea": [2, 15], "regularli": 2, "ensur": [2, 6, 8, 11, 15, 18, 23, 24], "critic": [2, 23], "consid": [2, 13, 17, 18, 19, 23], "rectifi": 2, "again": 2, "seen": 2, "below": [2, 3, 7], "were": [2, 3, 11, 13], "move": 2, "due": 2, "multipl": [2, 21], "seri": [2, 3, 7, 9, 13, 16, 17, 18, 23, 24], "df_quarantin": 2, "read_quarantined_data": [2, 23], "quarantine_dttm": 2, "patientid": [2, 22], "sopinstanceuid": [2, 22], "seriesdescript": [2, 3, 17], "05": [2, 7, 16], "2004": 2, "607202": 2, "258957568007": 2, "scout": 2, "neck": 2, "oral": 2, "naso": 2, "w": 2, "con": 2, "612104": 2, "181695106907": 2, "155": 2, "626832": 2, "308207714344": 2, "bone": [2, 6], "632129": 2, "189167578552": 2, "637284": 2, "146032766668": 2, "607": 2, "38": [2, 5, 7], "243995": 2, "190466192108": 2, "contrast120cc": 2, "3cc": 2, "90": 2, "delai": 2, "608": 2, "254101": 2, "209452648754": 2, "609": 2, "264199": 2, "174557835738": 2, "610": 2, "274353": 2, "113716820433": 2, "611": 2, "284480": 2, "141027169157": 2, "612": 2, "often": [3, 5, 10], "need": [3, 21], "tackl": 3, "clean": [3, 5, 9, 17, 19], "even": [3, 11, 12, 16, 18, 23, 25], "grid": [3, 6, 8, 11], "howev": [3, 11], "relev": [3, 11], "categori": 3, "solv": 3, "extract": [3, 4, 5, 7, 9, 12, 16, 18, 23, 24], "overal": [3, 13], "might": [3, 11, 12, 19, 21], "radiotherapi": [3, 19], "treatment": 3, "calcul": 3, "treat": 3, "auto": [3, 6, 8, 10, 19, 23], "segment": [3, 6, 8, 10, 11, 12, 19, 23], "off": [3, 6, 15], "specif": [3, 6, 7, 8, 10, 11, 17, 19, 23, 24], "latest": [3, 5, 12, 17], "perform": [3, 6, 9, 12, 19], "logic": 3, "pd": [3, 12, 16, 17, 18, 21, 22, 23, 24], "preprepar": 3, "testdata_hnscc": [3, 4, 6, 8], "default": [3, 5, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "entir": [3, 5, 10, 23], "what": [3, 5, 13, 15], "c": [3, 6, 9], "date": [3, 18, 24], "along": [3, 19, 24], "dose_project": 3, "rt_latest_dos": [3, 5, 17], "dose_project_nam": 3, "abov": [3, 6, 10, 11], "finish": [3, 11], "thing": 3, "part": [3, 9, 10, 19], "actual": 3, "symbol": [3, 19], "origin": [3, 6, 9, 17, 24], "isn": [3, 11], "t": [3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 17, 18, 19, 21, 22, 23, 24], "duplic": [3, 16, 21], "easi": [3, 15, 19, 23], "support": [3, 6, 11, 15, 20, 21], "unix": 3, "linux": 3, "maco": 3, "oper": [3, 9], "won": [3, 4, 6, 7, 8, 9, 10, 11, 18, 21, 23], "window": [3, 9], "still": 3, "By": [3, 7], "suppli": [3, 10, 11, 12, 17, 19, 21, 23, 24], "obtain": [3, 9], "df_dose_project": 3, "e": [3, 4, 12, 13], "g": [3, 4, 12], "metric": [3, 5, 6, 10, 12, 19], "next": [3, 10], "studydescript": [3, 9], "metadata": [3, 24], "achiev": [3, 10], "rt_latest_struct": [3, 17], "observ": 3, "studi": [3, 9], "structure_project_nam": 3, "structure_project": 3, "series_descript": 3, "rt": [3, 8, 9], "simul": 3, "df_structure_project": 3, "filter": [3, 6, 9, 12, 17], "image_project": 3, "keep": [3, 7, 10, 19, 24], "read": [3, 6, 15, 18, 23, 24], "df_ct": [3, 6], "image_project_nam": 3, "df_image_project": 3, "complex": 3, "would": [3, 15, 20], "closest": 3, "prear": 3, "clinical_project": 3, "dummi": [3, 11], "clinic": 3, "tabular": 3, "df_clinic": 3, "stage": 3, "who": [3, 15], "nearest": 3, "rt_start_dat": 3, "2002": 3, "2009": 3, "datetim": [3, 18, 24], "to_datetim": 3, "y": [3, 16], "m": [3, 7, 9], "ll": [3, 5], "load_object_metadata": [3, 6, 7, 9, 24], "determine_dcm_datetim": [3, 9, 24], "extract_clinical_data": 3, "df_data": 3, "merg": [3, 15], "outer": 3, "aren": [3, 9, 10, 11, 18, 21, 23, 24], "obj_dat": 3, "lambda": [3, 9], "axi": [3, 9], "list": [3, 7, 8, 10, 12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "indici": 3, "keep_row": 3, "sort": [3, 13, 19], "descend": 3, "order": [3, 5, 7, 12, 23], "sort_valu": 3, "ascend": 3, "loop": [3, 9], "df_pat": 3, "df_dose": [3, 6], "skip": 3, "len": [3, 6, 24], "continu": [3, 6, 13, 15, 18, 23], "thei": [3, 10, 12, 13], "dose_row": [3, 6, 24], "df_linked_struct": 3, "get_structures_linked_to_dos": [3, 23, 24], "final": [3, 16, 17], "find": [3, 4, 6, 10, 16, 17, 18, 21, 23], "struct_row": [3, 10], "df_linked_imag": 3, "image_row": [3, 18, 23], "indci": 3, "append": 3, "loc": 3, "clinical_project_nam": 3, "df_clinical_project": 3, "volum": [4, 5, 12, 16, 18, 23, 24], "histogram": [4, 5, 12, 24], "cancer": [4, 7, 19], "archiv": [4, 7], "prepar": [4, 7, 8, 10, 12, 18, 19, 21, 23, 24], "areadi": [4, 6, 7, 8, 9, 10, 11], "39": [4, 5, 6, 7, 8, 9, 10, 11], "done": [4, 21], "compute_dvh": [4, 12], "png": [4, 5, 8, 12, 25], "raw": [4, 12, 16], "get_all_dvhs_for_dataset": [4, 12], "df_dvh": 4, "struct_hash": [4, 5, 11, 24], "dose_hash": [4, 5], "label": [4, 5, 21], "cc": [4, 5], "77": [4, 5, 8], "78": [4, 5], "4640": [4, 5], "553474": [4, 5], "679710": [4, 5], "837845": 4, "835239": 4, "83267": 4, "000028": 4, "000020": 4, "000009": 4, "000002": 4, "165262e": 4, "2689": [4, 5], "948082": [4, 5], "784290": [4, 5], "00000": 4, "000048": 4, "000035": 4, "000016": 4, "000004": 4, "063598e": 4, "brain": [4, 5], "549": [4, 5], "576759": [4, 5], "043829": [4, 5], "000000e": 4, "brainstem": [4, 5], "636032": [4, 5], "998913": [4, 5], "ctv63": [4, 5], "467": [4, 5], "602730": [4, 5], "274086": [4, 5], "000275": 4, "000202": 4, "000092": 4, "000024": 4, "118491e": 4, "788": 4, "compute_dose_metr": [4, 5, 12], "v": [4, 12], "dcc": [4, 12], "d95": [4, 5, 12], "d50": [4, 5, 12], "v5": [4, 12], "dcc10": [4, 12], "df_dose_metr": [4, 5], "d_point": [4, 5, 12], "95": [4, 5, 12], "v_point": [4, 5, 12], "d_cc_point": [4, 12], "d10cc": 4, "030835": [4, 5], "358893": [4, 5], "3558": 4, "228493": 4, "75": [4, 5], "501190": 4, "384142": [4, 5], "358867": [4, 5], "2668": 4, "971062": 4, "657684": [4, 5], "339093": [4, 5], "544": 4, "220924": 4, "56": [4, 5], "311918": 4, "935185": [4, 5], "202222": [4, 5], "46": [4, 5, 6, 9], "232806": 4, "177108": [4, 5], "589748": [4, 5], "494366": 4, "basic": [5, 9], "project": [5, 10, 11, 12, 14, 15, 18, 19, 23, 24], "functionl": 5, "handl": [5, 11, 16, 19], "corrupt": 5, "place": [5, 15, 16, 19, 21, 24], "alongsid": [5, 6, 7], "comput": [5, 6, 10, 12, 16, 19, 23, 25], "radiom": [5, 10, 12, 19, 23], "featur": [5, 7, 8, 10, 12, 19], "quit": 5, "consum": 5, "depend": [5, 15, 18, 23], "portion": 5, "finer": 5, "control": 5, "reason": [5, 13], "run_pipelin": [5, 19, 23], "414": 5, "91file": 5, "57": 5, "96": [5, 16], "dvh": [5, 6, 12, 23, 24, 25], "bit": [5, 9], "messi": 5, "somewhat": 5, "approach": 5, "detail": [5, 9, 11], "preparation_funct": [5, 17], "analysi": [5, 12, 19], "further": [5, 12, 15, 18, 19, 21, 23], "df_radiom": [5, 7], "get_all_computed_radiomics_for_dataset": [5, 7, 12], "contour": [5, 7], "imagehasheduid": [5, 7], "structhasheduid": [5, 7], "resampledpixelspac": [5, 7], "normalisationscal": [5, 7], "firstord": [5, 7], "10percentil": [5, 7], "90percentil": [5, 7], "energi": [5, 7], "entropi": [5, 7], "median": [5, 7], "minimum": [5, 7], "rang": [5, 7], "robustmeanabsolutedevi": [5, 7], "rootmeansquar": [5, 7], "skew": [5, 7], "totalenergi": [5, 7], "varianc": [5, 7], "999": 5, "339": 5, "178130e": 5, "785593": 5, "630179": 5, "18": [5, 6, 7, 9, 11], "1024": [5, 9], "4000": 5, "276": 5, "691595": 5, "565": 5, "017962": 5, "216289": 5, "481475e": 5, "076182": 5, "302955": 5, "835075": 5, "68": [5, 7], "669": 5, "587794e": 5, "415742": 5, "142": 5, "809678": 5, "41": 5, "747524": 5, "410": 5, "946993": 5, "886750": 5, "542715e": 5, "111299": 5, "148482": 5, "826970": 5, "70": [5, 6, 7, 8], "420357e": 5, "698910": 5, "375629": 5, "849": 5, "2151": 5, "055957": 5, "813075": 5, "351606": 5, "836879e": 5, "427362": 5, "1283": 5, "403884": 5, "860914e": 5, "275139": 5, "442222": 5, "581": 5, "063362": 5, "431514": 5, "682653": 5, "324118e": 5, "491624": 5, "190": [5, 7], "937232": 5, "308": 5, "346678e": 5, "124500": 5, "805603": 5, "1014": 5, "3990": 5, "36": 5, "643247": 5, "287": 5, "047711": 5, "524907": 5, "852878e": 5, "125626": 5, "78938": 5, "289561": 5, "ctv63_sep": 5, "409": 5, "498": 5, "517524e": 5, "069875": 5, "578143": 5, "32": [5, 7, 8], "89": 5, "611043": 5, "407": 5, "993479": 5, "163450": 5, "436883e": 5, "061470": 5, "165046": 5, "562407": 5, "ctv70": 5, "209": 5, "101866e": 5, "585289": 5, "69": 5, "823863": 5, "997": 5, "2572": 5, "191215": 5, "211": 5, "758612": 5, "987960": 5, "459655e": 5, "164658": 5, "39966": 5, "337967": 5, "cord": 5, "85": 5, "136484e": 5, "646141": 5, "48": 5, "951795": 5, "49": [5, 7], "296": 5, "1058": 5, "980855": 5, "085212": 5, "263382": 5, "469560e": 5, "233730": 5, "2656": 5, "829157": 5, "cord_expand": 5, "754": 5, "387667e": 5, "928948": 5, "231702": 5, "123": [5, 11], "3272": 5, "177": 5, "244691": 5, "417": 5, "346112": 5, "615239": 5, "541424e": 5, "061246": 5, "97873": 5, "824272": 5, "extern": [5, 13], "582": 5, "663208e": 5, "426843": 5, "121": 5, "129199": 5, "62": 5, "170197": 5, "389": 5, "791941": 5, "028668": 5, "758476e": 5, "104930": 5, "137265": 5, "474901": 5, "gtv1": 5, "553947e": 5, "430806": 5, "678033": 5, "2297": 5, "273112": 5, "83": [5, 8], "549794": 5, "213768": 5, "016792e": 5, "290775": 5, "5560": 5, "934010": 5, "lt_parotid": 5, "76": [5, 7], "793782e": 5, "747940": 5, "772190": 5, "119": 5, "208": 5, "155809": 5, "366267": 5, "094309": 5, "943717e": 5, "165854": 5, "1667": 5, "158645": 5, "lt_deep_prtd": 5, "208941e": 5, "855015": 5, "347047": 5, "221": 5, "206174": 5, "135812": 5, "002344": 5, "204188e": 5, "152867": 5, "1949": 5, "874234": 5, "lt_sup_prtd": 5, "80": [5, 6], "932703e": 5, "486043": 5, "238202": 5, "112": 5, "178": 5, "082085": 5, "869833": 5, "060561": 5, "390531e": 5, "193892": 5, "1220": 5, "955994": 5, "mandibl": 5, "1294": 5, "492566e": 5, "931930": 5, "637": 5, "881065": 5, "602": 5, "188": 5, "1851": 5, "328": 5, "164625": 5, "787": 5, "427714": 5, "236129": 5, "270266e": 5, "018566": 5, "213150": 5, "151566": 5, "optic_nerv": 5, "702145e": 5, "379679": 5, "759629": 5, "850": 5, "1437": 5, "985759": 5, "110": 5, "185458": 5, "087479": 5, "869876e": 5, "149776": 5, "11370": 5, "238228": 5, "oral_avoid": 5, "1044": 5, "299995e": 5, "093911": 5, "257": 5, "075139": 5, "615572": 5, "600": 5, "257436": 5, "282101": 5, "719315e": 5, "063132": 5, "294221": 5, "363063": 5, "ptv57": 5, "74": [5, 7], "141580e": 5, "655007": 5, "569312": 5, "974": 5, "2389": 5, "424098": 5, "204": 5, "728314": 5, "066404": 5, "127108e": 5, "132085": 5, "41822": 5, "111014": 5, "ptv63": 5, "270": 5, "429": [5, 7], "911092e": 5, "852886": 5, "173846": 5, "189480": 5, "384": 5, "016550": 5, "549360": 5, "549484e": 5, "072524": 5, "146160": 5, "163747": 5, "ptv70": 5, "55": 5, "387": 5, "495341e": 5, "153192": 5, "79": 5, "991129": 5, "1000": [5, 7], "3976": 5, "904178": 5, "306": 5, "295730": 5, "086361": 5, "278205e": 5, "126097": 5, "87418": 5, "493331": 5, "post_neck": 5, "216": 5, "456349e": 5, "744445": 5, "016919": 5, "143": 5, "1555": 5, "872956": 5, "237": 5, "810678": 5, "155396": 5, "888695e": 5, "117753": 5, "51927": 5, "617163": 5, "rt_parotid": 5, "61": [5, 8], "763875e": 5, "571701": 5, "798874": 5, "124": 5, "1345": 5, "355544": 5, "339575": 5, "353950": 5, "046488e": 5, "214621": 5, "3975": 5, "769687": 5, "ring": 5, "rt_deep_prtd": 5, "72": 5, "353914e": 5, "596270": 5, "225243": 5, "1448": 5, "602131": 5, "611962": 5, "152671": 5, "873580e": 5, "216523": 5, "8531": 5, "391337": 5, "rt_sup_prtd": 5, "699281e": 5, "627386": 5, "784448": 5, "115": 5, "1206": 5, "682879": 5, "091120": 5, "311626": 5, "488884e": 5, "200511": 5, "2927": 5, "633827": 5, "chiasm": 5, "122952e": 5, "907659": 5, "686332": 5, "1223": 5, "397863": 5, "989482": 5, "099615": 5, "212790e": 5, "383310": 5, "5285": 5, "781869": 5, "cold": 5, "882986e": 5, "265029": 5, "388430": 5, "645": 5, "849018": 5, "162": 5, "707419": 5, "117025": 5, "248290e": 5, "163774": 5, "12220": 5, "107157": 5, "cool_off": 5, "915266e": 5, "894287": 5, "218110": 5, "203": 5, "733117": 5, "244808": 5, "523930": 5, "550678e": 5, "149391": 5, "2713": 5, "685499": 5, "ctv_57": 5, "135206e": 5, "351470": 5, "309885": 5, "972": 5, "1988": 5, "376180": 5, "171": [5, 7], "730129": 5, "093002": 5, "613603e": 5, "148683": 5, "29437": 5, "802764": 5, "hotspot": 5, "187": 5, "1282": 5, "445281e": 5, "115974": 5, "375": 5, "515514": 5, "196": 5, "964": 5, "2508": 5, "321": 5, "413652": 5, "660": 5, "328969": 5, "522511": 5, "996004e": 5, "020100": 5, "295022": 5, "446264": 5, "larynx_avoid": 5, "975": 5, "655352e": 5, "605136": 5, "369": 5, "268506": 5, "1237": 5, "353": 5, "504851": 5, "559": 5, "714876": 5, "451007": 5, "331907e": 5, "063251": 5, "176921": 5, "512696": 5, "v3": 5, "3709": 5, "925652": 5, "2688": 5, "291550": 5, "553871": 5, "146": 5, "395683": 5, "858795": 5, "433568": 5, "122560": 5, "325": 5, "512886": 5, "304520": 5, "484503": 5, "385685": 5, "082298": 5, "179092": 5, "371394": 5, "130000": 5, "092384": 5, "497162": 5, "978754": 5, "222574": 5, "201053": 5, "84": 5, "640503": 5, "3131": 5, "858826": 5, "149075": 5, "677738": 5, "766531": 5, "3123": 5, "699188": 5, "145": 5, "660400": 5, "551830": 5, "922256": 5, "579562": 5, "444237": 5, "419106": 5, "986429": 5, "608333": 5, "910873": 5, "722030": 5, "243333": 5, "44": [5, 7], "633333": 5, "819466": 5, "882912": 5, "387500": 5, "795833": 5, "870544": 5, "695267": 5, "463077": 5, "843662": 5, "011154": 5, "785028": 5, "719756": 5, "280000": 5, "103": 5, "225708": 5, "481693": 5, "202899": 5, "124706": 5, "222847": 5, "183968": 5, "981964": 5, "899716": 5, "101947": 5, "172": [5, 7], "883034": 5, "743240": 5, "60": 5, "450535": 5, "955415": 5, "456": 5, "015587": 5, "606650": 5, "455984": 5, "783420": 5, "174": 5, "854279": 5, "756176": 5, "159714": 5, "474556": 5, "190819": 5, "072630": 5, "400455": 5, "722973": 5, "420280": 5, "257150": 5, "456250": 5, "916667": 5, "910728": 5, "038557": 5, "269444": 5, "693590": 5, "898071": 5, "427364": 5, "240769": 5, "989552": 5, "115654": 5, "219050": 5, "963571": 5, "269500": 5, "266998": 5, "732640": 5, "155556": 5, "63": 5, "781250": 5, "623047": 5, "087975": 5, "294831": 5, "537787": 5, "044617": 5, "649550": 5, "448571": 5, "036364": 5, "036034": 5, "251480": 5, "509174": 5, "743333": 5, "757143": 5, "primarili": 6, "deal": 6, "instanc": [6, 9, 13, 18, 23], "do": [6, 9], "eqd2": 6, "correct": [6, 19], "pseudo": 6, "mri": 6, "show": 6, "describ": [6, 16, 18, 24], "mention": 6, "read_simple_itk_imag": [6, 9, 24], "iter": [6, 10, 24], "hard": 6, "code": [6, 9], "appear": [6, 13], "alpha_beta": 6, "_": [6, 19, 23], "iterrow": [6, 9, 10], "eqd2_ab": 6, "scale": 6, "df_linked_plan": 6, "linked_plan": [6, 18, 23], "ds_plan": 6, "fraction": 6, "int": [6, 12, 20, 21, 23, 24], "fractiongroupsequ": 6, "numberoffractionsplan": 6, "dose_path": 6, "cast": 6, "sitkfloat64": 6, "dose_id": [6, 18, 23], "_eqd2_ab": 6, "eqd2_dos": 6, "add_dose_object": [6, 18, 23], "systemerror": [6, 18, 21, 23, 24], "c16e76_eqd2_ab2": 6, "833a74_eqd2_ab2": 6, "bf3fba_eqd2_ab2": 6, "309e1a_eqd2_ab2": 6, "threshold": 6, "infer": [6, 8], "bone_threshold": 6, "300": [6, 7], "hu": 6, "idx": [6, 9, 10], "ct_row": [6, 9], "bone_mask": 6, "mask": [6, 10, 12, 16, 18, 23], "structure_set_id": 6, "bones_": 6, "new_structure_set": 6, "add_structure_object": [6, 18, 23], "bones_72b0f9": 6, "bones_c4ffd0": 6, "bones_8e0da9": 6, "bones_ec4aec": 6, "bones_33c44a": 6, "bones_b281ea": 6, "b": 6, "flag": [6, 18, 24], "newli": 6, "94": 6, "laplacian": 6, "sharpen": 6, "img_sharp": 6, "laplaciansharpen": 6, "sharp_": 6, "add_image_object": [6, 18, 23], "sharp_72b0f9": 6, "sharp_c4ffd0": 6, "sharp_8e0da9": 6, "sharp_ec4aec": 6, "sharp_33c44a": 6, "sharp_b281ea": 6, "between": [6, 12, 15], "home": [6, 8], "runner": [6, 8], "cach": [6, 8], "pypoetri": [6, 8], "virtualenv": [6, 8], "pnpn9n62": [6, 8], "py3": [6, 8], "lib": [6, 8, 18], "python3": [6, 8, 18], "site": [6, 8], "packag": [6, 8], "pydicom": [6, 8, 9, 20, 24], "valuerep": [6, 8], "py": [6, 8, 15, 18], "443": [6, 8], "userwarn": [6, 8], "invalid": [6, 8], "vr": [6, 8], "da": [6, 8, 9], "nat": [6, 8], "msg": [6, 8], "15object": 6, "18object": 6, "42object": 6, "46object": 6, "pyradiom": [7, 12], "type": [7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24], "compute_radiom": [7, 12], "b5bddb": [7, 9, 11], "6834c9": [7, 9, 11], "last": 7, "structureset": [7, 11, 17, 21], "No": [7, 10, 11, 13], "379739e": 7, "563380": 7, "382764": 7, "745": 7, "940": 7, "951183": 7, "379070": 7, "961993": 7, "642731e": 7, "232723": 7, "3838": 7, "804579": 7, "486142e": 7, "343017": 7, "078823": 7, "577": 7, "806": 7, "250737": 7, "881633": 7, "753651": 7, "185112e": 7, "273513": 7, "1741": 7, "864194": 7, "871": 7, "502": 7, "907161e": 7, "313815": 7, "729": 7, "756106": 7, "778": 7, "1357": 7, "906500": 7, "747": 7, "249117": 7, "747786": 7, "006062e": 7, "069585": 7, "25837": 7, "268599": 7, "889": 7, "480": 7, "790689e": 7, "414603": 7, "735": 7, "842185": 7, "789": 7, "1215": 7, "876692": 7, "755": 7, "465238": 7, "617379": 7, "233563e": 7, "063675": 7, "29264": 7, "004413": 7, "830546e": 7, "638360": 7, "051730": 7, "144": 7, "573": 7, "213519": 7, "364661": 7, "348291": 7, "758810e": 7, "205445": 7, "1705": 7, "073671": 7, "popular": 7, "librari": [7, 9, 15, 19], "document": [7, 9, 10, 11, 15, 19, 21], "shape": 7, "group": 7, "first_order_featur": 7, "radiomicsfirstord": 7, "getfeaturenam": 7, "shape_featur": 7, "radiomicsshap": 7, "few": [7, 19], "maximum2ddiametercolumn": 7, "maximum2ddiameterrow": 7, "maximum2ddiameterslic": 7, "maximum3ddiamet": 7, "meshvolum": 7, "minoraxislength": 7, "spheric": 7, "surfacearea": 7, "surfacevolumeratio": 7, "voxelvolum": 7, "223": 7, "924778": 7, "222": 7, "309084": 7, "619884": 7, "224": 7, "231209": 7, "193220e": 7, "733471": 7, "408351": 7, "11919": 7, "810387": 7, "373285": 7, "316495e": 7, "163": 7, "733306": 7, "040344": 7, "151": 7, "241053": 7, "164": 7, "152138": 7, "510135e": 7, "977462": 7, "781597": 7, "51121": 7, "049949": 7, "068069": 7, "526486e": 7, "236": 7, "649430": 7, "242": 7, "714238": 7, "429595": 7, "245": 7, "982024": 7, "802886e": 7, "702531": 7, "568696": 7, "125964": 7, "905979": 7, "069868": 7, "801747e": 7, "231": 7, "159117": 7, "247": 7, "961931": 7, "186": 7, "213760": 7, "248": 7, "126635": 7, "159708e": 7, "513299": 7, "582917": 7, "138614": 7, "093158": 7, "064182": 7, "161386e": 7, "128718": 7, "313": 7, "974459": 7, "529436": 7, "314": 7, "315983": 7, "050233e": 7, "966235": 7, "418454": 7, "19722": 7, "946105": 7, "279749": 7, "217496e": 7, "195": 7, "229": 7, "357": 7, "215": 7, "certain": [7, 21], "header": [7, 12, 21, 22], "tag": [7, 12, 24], "recomput": [7, 12], "patientsex": [7, 9], "studyd": [7, 9, 24], "meta": [7, 19], "image_meta_data": [7, 12], "structure_meta_data": [7, 12], "struct": [7, 16], "20040303": 7, "cross": 8, "section": [8, 10], "them": [8, 10], "particularli": 8, "noth": 8, "gone": 8, "advanc": [8, 13], "call": [8, 17, 18, 23], "vis_": 8, "82": 8, "73": 8, "97": 8, "argument": [8, 9, 11, 17, 21], "ve": 8, "ad": [8, 10, 11, 18, 23], "393": 8, "96object": 8, "present": [9, 10, 11, 17, 21], "tip": 9, "trick": 9, "heavili": 9, "orient": [9, 13], "around": [9, 13], "familiar": 9, "tutori": 9, "335375068555": [9, 11], "structu": [9, 11], "770569242984": [9, 11], "639871532605": [9, 11], "234842392725": [9, 11], "135073567254": [9, 11], "269433294341": [9, 11], "338518041666": [9, 11], "188371727865": [9, 11], "330486033168": [9, 11], "109432485688": [9, 11], "267594131248": [9, 11], "106943890850": [9, 11], "742383887179": [9, 11], "just": [9, 13], "end": [9, 18], "complet": [9, 11, 15], "first_row": 9, "0008": 9, "0005": 9, "iso_ir": 9, "primari": 9, "axial": 9, "ct_som5": 9, "spi": 9, "0012": 9, "creation": 9, "20050726": 9, "0013": 9, "tm": 9, "090342": 9, "451000": 9, "0016": 9, "sop": [9, 16, 18, 23], "ui": 9, "storag": 9, "0018": 9, "168227681755643512811062844019": 9, "0020": 9, "20031213": 9, "0021": 9, "0023": 9, "content": [9, 23, 24], "0030": 9, "140027": 9, "397000": 9, "0031": 9, "141846": 9, "903000": 9, "0033": 9, "141558": 9, "073000": 9, "0050": 9, "access": [9, 23], "number": [9, 24], "sh": [9, 11], "1507292331039118": 9, "0060": 9, "0070": 9, "manufactur": 9, "lo": 9, "siemen": 9, "0090": 9, "physician": 9, "pn": 9, "1030": 9, "rcct_thorax_8f_high": 9, "adult": 9, "103e": 9, "p1b3respct": 9, "b30f": 9, "ex": 9, "1090": 9, "sensat": 9, "open": [9, 13, 19], "0010": 9, "birth": 9, "0040": 9, "sex": [9, 13], "0062": 9, "ident": [9, 13], "remov": [9, 11, 13, 21, 24], "ye": 9, "0063": 9, "de": 9, "identif": 9, "method": [9, 11], "per": [9, 10, 11, 18, 23], "p": [9, 19], "annex": 9, "0064": 9, "sequenc": 9, "item": [9, 14, 17], "0100": 9, "113100": 9, "0102": 9, "scheme": 9, "design": 9, "dcm": [9, 16], "0104": 9, "applic": 9, "confidenti": 9, "profil": 9, "113101": 9, "option": [9, 12, 16, 18, 20, 21, 22, 23, 24, 25], "113104": 9, "113105": 9, "descriptor": 9, "113107": 9, "retain": 9, "longitudin": 9, "tempor": 9, "modifi": 9, "113108": 9, "characterist": [9, 13], "113109": 9, "devic": 9, "113111": 9, "safe": 9, "privat": [9, 13], "creator": 9, "ctp": 9, "1010": 9, "1013": 9, "70144598": 9, "0015": 9, "bodi": [9, 13], "examin": 9, "lung": 9, "thick": 9, "kvp": 9, "120": 9, "collect": [9, 20], "diamet": 9, "500": 9, "1100": 9, "reconstruct": 9, "1110": 9, "sourc": [9, 11, 19], "detector": 9, "1040": 9, "1111": 9, "570": 9, "1120": 9, "gantri": 9, "tilt": 9, "1130": 9, "height": 9, "184": 9, "1140": 9, "rotat": 9, "direct": 9, "cw": 9, "1150": 9, "exposur": 9, "361": 9, "1151": [9, 10], "x": [9, 16], "rai": 9, "tube": 9, "1152": 9, "1160": 9, "1170": 9, "power": 9, "1190": 9, "focal": 9, "spot": 9, "1210": 9, "convolut": 9, "kernel": 9, "5100": 9, "posit": [9, 13, 16], "hf": 9, "000d": 9, "208415500372767635171688815875": 9, "000e": 9, "335375068555840597820636886710": 9, "0011": 9, "acquisit": 9, "149": 9, "0032": 9, "249": 9, "51171875": 9, "433": 9, "702": 9, "0037": 9, "0052": 9, "frame": [9, 16, 18, 23, 24], "187709044743964862096664351089": 9, "1041": 9, "0028": 9, "0002": 9, "0004": 9, "photometr": 9, "interpret": 9, "monochrome2": 9, "512": 9, "9765625": 9, "alloc": 9, "0101": 9, "high": 9, "0103": 9, "0303": 9, "1050": 9, "center": 9, "1051": 9, "width": [9, 12], "400": 9, "1052": 9, "rescal": 9, "intercept": 9, "1053": 9, "slope": 9, "3253": 9, "varian": 9, "vision": 9, "7fe0": 9, "ow": 9, "none": [9, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25], "slow": 9, "especi": 9, "mani": 9, "keep_tag": [9, 24], "know": [9, 16], "attribut": [9, 17], "speed": 9, "significantli": 9, "fact": 9, "rcct_thorax_8f": 9, "special": 9, "rcctpet_thorax_8f": 9, "rcct_thorax_8f_high_contrast": 9, "rcct_thorax_8f_low": 9, "could": [9, 13, 17], "doesn": [9, 14, 23, 24], "obj_datetim": 9, "2003": 9, "One": [10, 12], "inconsist": 10, "global": 10, "introduc": 10, "simplifi": 10, "kei": [10, 12, 17, 18, 19, 21, 23, 24], "sum": [10, 18, 23], "voxel": [10, 11, 21], "structure_set": [10, 21, 23, 24], "structure_nam": [10, 18, 23], "getarrayfromimag": [10, 18, 23], "52528": 10, "68074": 10, "4157": 10, "23857": 10, "consist": [10, 15, 19], "resolv": [10, 11, 15, 19], "variat": 10, "structure_set_row": [10, 17, 23, 24], "correspond": [10, 12, 18, 21, 23], "neither": 10, "structure_set_map": 10, "properli": [10, 21], "json": [10, 16], "leav": 10, "struct_subset": 10, "sub_map": 10, "local_map": 10, "had": 10, "stucture_set": 10, "fetch": [10, 11, 12, 19, 20, 24], "nnunet": 10, "automat": [10, 15], "self": 11, "configur": [11, 18, 19, 21, 23, 24], "deep": 11, "learn": [11, 13], "biomed": 11, "doe": [11, 18, 21, 23], "wai": [11, 13, 15, 19], "v1": 11, "contribut": [11, 13], "v2": 11, "welcom": [11, 13, 15, 19], "log": [11, 18, 19, 21, 23], "consult": 11, "conduct": 11, "nnunet_raw_data_bas": 11, "environ": [11, 13, 15, 19, 21], "scratch": 11, "nnscratch": 11, "verbos": [11, 23, 24], "set_verbos": [11, 23], "mapping_dict": [11, 23, 24], "nnunet_task_id": 11, "nnunet_task_nam": 11, "lctsc_test": 11, "nnunet_task_descript": 11, "expect": [11, 15, 19, 21], "multi": 11, "yet": [11, 18, 21, 23, 24], "state": 11, "check_dataset": [11, 21], "ok": 11, "randomli": 11, "training_cas": [11, 21], "testing_cas": [11, 21], "split_dataset": [11, 21], "train_test_split": [11, 21], "sklearn": [11, 21], "keyword": [11, 17, 24], "possibl": [11, 19], "anonymis": [11, 21], "check_duplicates_train_test": [11, 21], "check_structure_nam": [11, 21], "proceed": 11, "df_result": 11, "nbsp": 11, "unabl": 11, "assign": [11, 21], "smaller": [11, 21], "larger": [11, 21], "assign_overlap_to_largest": [11, 21], "check_overlapping_structur": [11, 21], "affect": [11, 13], "rule": 11, "proce": 11, "nnunet_dataset_path": 11, "prepare_dataset": [11, 17, 21], "nnunet_raw_data": 11, "task123_lctsc_test": 11, "generate_training_script": [11, 21], "command": [11, 15], "top": [11, 17], "activ": [11, 21], "virtual": [11, 15], "environemnt": 11, "script_head": [11, 21], "venv": 11, "bin": [11, 12], "script_path": 11, "back": 11, "train_123_lctsc_test": 11, "analysedata": [12, 23], "paramet": [12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25], "df_process": 12, "union": [12, 16, 17, 18, 20, 21, 22, 23, 24, 25], "float": 12, "d99": 12, "99": 12, "v10": 12, "v50": 12, "dcc5": 12, "dcc50": 12, "valueerror": [12, 14, 16, 18, 21, 23, 24], "request": [12, 13, 15, 18], "bin_width": 12, "structure_meta_data_col": 12, "dose_meta_data_col": 12, "bool": [12, 16, 18, 21, 22, 23, 24, 25], "string": [12, 17, 18, 23, 24], "structure_match_regex": 12, "resample_to_imag": 12, "custom_radiom": 12, "http": [12, 13, 18, 19, 24], "readthedoc": 12, "io": 12, "en": 12, "html": [12, 13], "pyrad_default_set": 12, "regular": 12, "express": [12, 13], "resampl": 12, "similar": 12, "entri": [12, 16, 17, 18, 23, 24], "attach": 12, "default_mapping_id": [12, 23, 24], "_description_": 12, "previous": [12, 18, 22, 23], "converted_dir_nam": [12, 18, 23], "statist": 12, "similarity_analysi": 12, "member": 13, "contributor": [13, 15], "leader": 13, "particip": 13, "commun": 13, "harass": 13, "free": 13, "experi": 13, "everyon": 13, "regardless": 13, "ag": 13, "size": 13, "visibl": 13, "invis": 13, "disabl": [13, 18, 23], "ethnic": 13, "gender": 13, "educ": 13, "socio": 13, "econom": 13, "statu": 13, "nation": 13, "person": 13, "race": 13, "religion": 13, "sexual": 13, "act": 13, "interact": 13, "divers": 13, "inclus": 13, "healthi": 13, "behavior": 13, "empathi": 13, "kind": 13, "toward": 13, "peopl": 13, "Being": 13, "opinion": 13, "viewpoint": 13, "give": [13, 16, 19], "gracefulli": 13, "construct": 13, "feedback": 13, "apolog": 13, "mistak": 13, "focus": 13, "best": [13, 21], "individu": 13, "unaccept": 13, "languag": 13, "imageri": 13, "attent": 13, "troll": 13, "insult": 13, "derogatori": 13, "comment": 13, "polit": 13, "attack": 13, "public": [13, 24], "publish": 13, "physic": [13, 16, 19], "email": 13, "address": 13, "without": 13, "explicit": 13, "permiss": 13, "inappropri": 13, "profession": 13, "clarifi": 13, "appropri": [13, 15, 17, 19, 24], "fair": 13, "action": 13, "deem": 13, "threaten": 13, "offens": 13, "harm": 13, "right": 13, "edit": 13, "reject": 13, "commit": 13, "wiki": 13, "moder": 13, "decis": 13, "offici": 13, "repres": 13, "mail": 13, "post": 13, "social": 13, "media": 13, "account": 13, "appoint": 13, "onlin": 13, "offlin": 13, "event": 13, "abus": 13, "report": [13, 19], "almouie": [13, 19], "unsw": [13, 19], "edu": [13, 19], "au": [13, 19], "complaint": 13, "review": [13, 15], "investig": [13, 19], "promptli": 13, "fairli": 13, "oblig": 13, "privaci": 13, "secur": 13, "incid": 13, "impact": 13, "consequ": 13, "violat": 13, "unprofession": 13, "unwelcom": 13, "written": 13, "clariti": 13, "natur": 13, "explan": 13, "why": 13, "apologi": 13, "involv": 13, "unsolicit": 13, "period": 13, "avoid": 13, "channel": 13, "term": 13, "lead": [13, 24], "seriou": 13, "sustain": 13, "pattern": 13, "aggress": 13, "disparag": 13, "adapt": [13, 24], "coven": 13, "version": [13, 19], "www": 13, "org": [13, 19], "code_of_conduct": 13, "inspir": 13, "mozilla": 13, "ladder": 13, "answer": 13, "question": [13, 24], "about": [13, 16], "faq": 13, "translat": 13, "pydicerconfig": 14, "working_dir": [14, 18, 23], "attributeerror": [14, 17, 21], "given": [14, 17, 18, 23, 24], "get_working_dir": 14, "save_config": 14, "bug": [15, 19], "fix": [15, 19], "guidanc": 15, "develop": [15, 19], "branch": 15, "main": [15, 16, 17, 25], "implement": 15, "github": [15, 18, 19], "pull": [15, 24], "At": 15, "maintain": 15, "submiss": 15, "manag": [15, 21], "instruct": 15, "dev": 15, "extra": 15, "script": [15, 19, 21], "conform": 15, "pep": 15, "pylint": [15, 18, 23], "But": 15, "better": 15, "lint": 15, "vscode": 15, "pycharm": 15, "sure": 15, "suggest": 15, "submit": 15, "re": [15, 18, 23], "suit": 15, "repositori": 15, "pytest": 15, "realli": 15, "convertdata": [16, 23], "facilit": [16, 25], "its": 16, "intend": [16, 24], "add_entri": 16, "get_object_typ": 16, "handle_missing_slic": 16, "ignore_dupl": 16, "interpol": 16, "usag": 16, "input_d": 16, "dicom_file_1": 16, "dicom_file_2": 16, "98": 16, "dicom_file_3": 16, "file_paths_list": 16, "input_dict": 16, "df_file": 16, "preprocessdata": [16, 22], "filepath": 16, "booleanbool": 16, "specific": 16, "ignor": 16, "ones": 16, "link_via_frame_of_refer": 16, "FOR": 16, "convert_dicom_head": 16, "dcm_file": 16, "binary_path": 16, "json_fil": 16, "rel": [16, 23, 24], "binari": 16, "convert_rtstruct": 16, "dcm_img": 16, "dcm_rt_file": 16, "struct_": 16, "output_dir": [16, 18, 23], "output_img": 16, "underscor": 16, "write": [16, 18, 20], "overrid": 16, "write_nrrd_from_mask_directori": 16, "mask_directori": 16, "output_fil": 16, "colormap": 16, "color": 16, "linearsegmentedcolormap": 16, "nrrd": 16, "color_map": 16, "get_cmap": 16, "pt": [16, 19], "convert_dicom_to_nifti_pt": 16, "input_filepath": 16, "output_filepath": 16, "alert": 16, "weight": 16, "suv": 16, "runtimeerror": 16, "unit": [16, 24], "numpi": 16, "bound": 16, "box": 16, "arrai": 16, "get_physical_values_pt": 16, "get_sitk_volume_from_np": 16, "np_imag": 16, "pixel_spac": 16, "image_position_pati": 16, "np": 16, "get_suv_from_bqml": 16, "decay_tim": 16, "patient_weight": 16, "bqml": 16, "decai": 16, "get_suv_philip": 16, "cnt": 16, "philip": 16, "is_approx_equ": 16, "toler": 16, "preparedataset": [17, 23], "prepart": 17, "add_object_to_dataset": 17, "data_object_row": 17, "callabl": [17, 18, 23], "kwarg": [17, 21, 23, 24], "upon": 17, "known": 17, "df_prepar": 17, "approv": 17, "get_mapped_structure_nam": 17, "get_standardised_structure_nam": 17, "get_unmapped_structur": 17, "alwai": [17, 19], "empti": [17, 18, 23], "view": 17, "get_mapping_for_structure_set": 17, "search": 17, "hierarchi": [17, 22], "uniqu": [18, 23], "Of": [18, 23], "image_id": [18, 23], "linked_imag": [18, 23], "add_object": [18, 23], "object_id": [18, 23], "object_typ": [18, 23], "referenc": [18, 22, 23], "structure_id": [18, 23], "get_linked_for_and_ref_uid": 18, "linked_obj": 18, "tupl": [18, 24], "he": 18, "get_segmentation_log_path": 18, "relav": 18, "param": [18, 23], "read_segmentation_log": 18, "segmentation_funct": [18, 23], "segemtant": [18, 23], "segmet": [18, 23], "segment_funct": [18, 23], "algorithm": [18, 23], "customis": [18, 23], "wrap": [18, 23], "notat": [18, 23], "warpper": [18, 23], "tempfil": [18, 23], "input_imag": [18, 23], "python_api": [18, 23], "outsid": [18, 23], "toplevel": [18, 23], "temporarydirectori": [18, 23], "temporari": [18, 23], "total": [18, 23], "input_dir": [18, 23], "input_fil": [18, 23], "writeimag": [18, 23], "mask_fil": [18, 23], "fov": [18, 23], "typeerror": [18, 23], "requi": [18, 23], "write_autoseg_log": 18, "core": 18, "opt": 18, "hostedtoolcach": 18, "x64": 18, "success": 18, "error_msg": 18, "boolean": 18, "inic": 18, "successfulli": 18, "messag": 18, "get_available_mhub_model": 18, "mhub": 18, "load_output_nifti": 18, "run_mhub_model": 18, "mhub_model": 18, "mhub_config_fil": 18, "gpu": 18, "docker": 18, "made": 18, "ai": 18, "custom": 18, "sdk": 18, "com": [18, 24], "wasserth": 18, "eas": 19, "research": 19, "flexibl": 19, "principl": 19, "mind": 19, "generalis": 19, "under": 19, "hood": 19, "rememb": 19, "unexpect": 19, "mr": 19, "experiment": 19, "Not": 19, "intermedi": 19, "side": 19, "couldn": [19, 22], "chlap": 19, "et": 19, "al": 19, "softwarex": 19, "doi": 19, "1016": 19, "j": 19, "softx": 19, "102010": 19, "pac": [19, 20], "tcia": [19, 20], "orthanc": [19, 20], "visualist": 19, "assist": 19, "testdata": 19, "pleas": 19, "paper": 19, "mouiee": 19, "finnegan": 19, "rn": 19, "2025": 19, "extend": 19, "star": 19, "ingham": 19, "team": 19, "south": 19, "western": 19, "sydnei": 19, "australian": 19, "network": 19, "phillip": 19, "daniel": 19, "filesystem": 20, "filesysteminput": [20, 23], "dicompacsinput": [20, 23], "host": 20, "port": 20, "ae_titl": 20, "wildcard": 20, "orthancinput": [20, 23], "usernam": 20, "password": 20, "adapt_dataset_from_byt": 20, "blob": 20, "byte": 20, "come": 20, "tciainput": 20, "local": 20, "web": 20, "webinput": [20, 23], "data_url": 20, "nnunetdataset": 21, "nnunet_id": 21, "nnunet_nam": 21, "nnunet_descript": 21, "image_mod": 21, "add_testing_cas": 21, "inadvert": 21, "sometim": 21, "overlap": 21, "smallest": 21, "largest": 21, "script_directori": 21, "fold": 21, "bash": 21, "2d": 21, "3d_lowr": 21, "3d_fullr": 21, "insert": 21, "filenotfounderror": 21, "prep_label_map_from_one_hot": 21, "hasn": 21, "word": 21, "wil": 21, "in_screen": 21, "circumst": 21, "mostli": 21, "monitor": 21, "termin": 21, "screen": 21, "background": 21, "session": 21, "dicionari": 22, "hold": 22, "input_directori": 22, "regard": 22, "scan": 22, "res_dict": 22, "field": [22, 24], "studyinstanceuid": 22, "modailti": 22, "sopclassuid": 22, "frameofreferenceuid": 22, "seriesuid": 22, "referencedframeofreferenceuid": 22, "scan_fil": 22, "variabl": 23, "visualisedata": [23, 25], "input_obj": 23, "inputbas": 23, "deriv": 23, "summari": 23, "summaris": 23, "join_working_directori": [23, 24], "adjust": [23, 24], "pipelin": 23, "consol": 23, "progress": [23, 24], "update_log": 23, "reset": 23, "logger": 23, "everi": 23, "copy_doc": 24, "copy_func": 24, "remove_arg": 24, "anoth": 24, "decor": 24, "docstr": 24, "stackoverflow": 24, "68901049": 24, "onto": 24, "foo": 24, "require_tim": 24, "Will": 24, "attempt": 24, "seriesd": 24, "seriestim": 24, "fallback": 24, "studytim": 24, "instancecreationd": 24, "instancecreationtim": 24, "compon": 24, "download_and_extract_zip_fil": 24, "zip_url": 24, "output_directori": 24, "zip": 24, "url": 24, "get_iter": 24, "length": 24, "functio": 24, "hash_uid": 24, "truncat": 24, "trucat": 24, "load_dvh": 24, "remove_tag": 24, "kept": 24, "map_structure_nam": 24, "struct_map_dict": 24, "accord": 24, "remap": 24, "renam": 24, "parse_patient_kwarg": 24, "helper": 24, "dataset_directori": 24}, "objects": {"pydicer.analyse": [[12, 0, 0, "-", "compare"], [12, 0, 0, "-", "data"]], "pydicer.analyse.compare": [[12, 1, 1, "", "compute_contour_similarity_metrics"], [12, 1, 1, "", "get_all_similarity_metrics_for_dataset"], [12, 1, 1, "", "prepare_similarity_metric_analysis"]], "pydicer.analyse.data": [[12, 2, 1, "", "AnalyseData"]], "pydicer.analyse.data.AnalyseData": [[12, 3, 1, "", "compute_dose_metrics"], [12, 3, 1, "", "compute_dvh"], [12, 3, 1, "", "compute_radiomics"], [12, 3, 1, "", "get_all_computed_radiomics_for_dataset"], [12, 3, 1, "", "get_all_dvhs_for_dataset"]], "pydicer.config": [[14, 2, 1, "", "PyDicerConfig"]], "pydicer.config.PyDicerConfig": [[14, 3, 1, "", "get_config"], [14, 3, 1, "", "get_working_dir"], [14, 3, 1, "", "save_config"], [14, 3, 1, "", "set_config"]], "pydicer.convert": [[16, 0, 0, "-", "data"], [16, 0, 0, "-", "headers"], [16, 0, 0, "-", "pt"], [16, 0, 0, "-", "rtstruct"]], "pydicer.convert.data": [[16, 2, 1, "", "ConvertData"], [16, 1, 1, "", "get_object_type"], [16, 1, 1, "", "handle_missing_slice"], [16, 1, 1, "", "link_via_frame_of_reference"]], "pydicer.convert.data.ConvertData": [[16, 3, 1, "", "add_entry"], [16, 3, 1, "", "convert"]], "pydicer.convert.headers": [[16, 1, 1, "", "convert_dicom_headers"]], "pydicer.convert.pt": [[16, 1, 1, "", "convert_dicom_to_nifti_pt"], [16, 1, 1, "", "get_physical_values_pt"], [16, 1, 1, "", "get_sitk_volume_from_np"], [16, 1, 1, "", "get_suv_from_bqml"], [16, 1, 1, "", "get_suv_philips"], [16, 1, 1, "", "is_approx_equal"]], "pydicer.convert.rtstruct": [[16, 1, 1, "", "convert_rtstruct"], [16, 1, 1, "", "write_nrrd_from_mask_directory"]], "pydicer.dataset": [[17, 0, 0, "-", "functions"], [17, 0, 0, "-", "preparation"], [17, 0, 0, "-", "structureset"]], "pydicer.dataset.functions": [[17, 1, 1, "", "rt_latest_dose"], [17, 1, 1, "", "rt_latest_struct"]], "pydicer.dataset.nnunet": [[21, 2, 1, "", "NNUNetDataset"]], "pydicer.dataset.nnunet.NNUNetDataset": [[21, 3, 1, "", "add_testing_cases"], [21, 3, 1, "", "check_dataset"], [21, 3, 1, "", "check_duplicates_train_test"], [21, 3, 1, "", "check_overlapping_structures"], [21, 3, 1, "", "check_structure_names"], [21, 3, 1, "", "generate_training_scripts"], [21, 3, 1, "", "prep_label_map_from_one_hot"], [21, 3, 1, "", "prepare_dataset"], [21, 3, 1, "", "split_dataset"], [21, 3, 1, "", "train"]], "pydicer.dataset.preparation": [[17, 2, 1, "", "PrepareDataset"]], "pydicer.dataset.preparation.PrepareDataset": [[17, 3, 1, "", "add_object_to_dataset"], [17, 3, 1, "", "prepare"], [17, 3, 1, "", "prepare_from_dataframe"]], "pydicer.dataset.structureset": [[17, 2, 1, "", "StructureSet"], [17, 1, 1, "", "get_mapping_for_structure_set"]], "pydicer.dataset.structureset.StructureSet": [[17, 3, 1, "", "get_mapped_structure_name"], [17, 3, 1, "", "get_standardised_structure_name"], [17, 3, 1, "", "get_unmapped_structures"], [17, 3, 1, "", "items"], [17, 3, 1, "", "keys"], [17, 3, 1, "", "values"]], "pydicer.generate": [[18, 0, 0, "-", "models"], [18, 0, 0, "-", "object"], [18, 0, 0, "-", "segmentation"]], "pydicer.generate.models": [[18, 1, 1, "", "get_available_mhub_models"], [18, 1, 1, "", "load_output_nifti"], [18, 1, 1, "", "run_mhub_model"], [18, 1, 1, "", "run_total_segmentator"]], "pydicer.generate.object": [[18, 1, 1, "", "add_dose_object"], [18, 1, 1, "", "add_image_object"], [18, 1, 1, "", "add_object"], [18, 1, 1, "", "add_structure_object"], [18, 1, 1, "", "get_linked_for_and_ref_uid"]], "pydicer.generate.segmentation": [[18, 1, 1, "", "get_segmentation_log_path"], [18, 1, 1, "", "read_all_segmentation_logs"], [18, 1, 1, "", "read_segmentation_log"], [18, 1, 1, "", "segment_dataset"], [18, 1, 1, "", "segment_image"], [18, 1, 1, "", "write_autoseg_log"]], "pydicer.input": [[20, 0, 0, "-", "filesystem"], [20, 0, 0, "-", "orthanc"], [20, 0, 0, "-", "pacs"], [20, 0, 0, "-", "tcia"], [20, 0, 0, "-", "test"], [20, 0, 0, "-", "web"]], "pydicer.input.filesystem": [[20, 2, 1, "", "FileSystemInput"]], "pydicer.input.orthanc": [[20, 2, 1, "", "OrthancInput"], [20, 1, 1, "", "adapt_dataset_from_bytes"]], "pydicer.input.orthanc.OrthancInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.input.pacs": [[20, 2, 1, "", "DICOMPACSInput"]], "pydicer.input.pacs.DICOMPACSInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.input.tcia": [[20, 2, 1, "", "TCIAInput"]], "pydicer.input.tcia.TCIAInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.input.test": [[20, 2, 1, "", "TestInput"]], "pydicer.input.web": [[20, 2, 1, "", "WebInput"]], "pydicer.input.web.WebInput": [[20, 3, 1, "", "fetch_data"]], "pydicer.preprocess": [[22, 0, 0, "-", "data"]], "pydicer.preprocess.data": [[22, 2, 1, "", "PreprocessData"]], "pydicer.preprocess.data.PreprocessData": [[22, 3, 1, "", "preprocess"], [22, 3, 1, "", "scan_file"]], "pydicer.tool": [[23, 2, 1, "", "PyDicer"]], "pydicer.tool.PyDicer": [[23, 3, 1, "", "add_dose_object"], [23, 3, 1, "", "add_image_object"], [23, 3, 1, "", "add_input"], [23, 3, 1, "", "add_object"], [23, 3, 1, "", "add_structure_name_mapping"], [23, 3, 1, "", "add_structure_object"], [23, 3, 1, "", "get_structures_linked_to_dose"], [23, 3, 1, "", "preprocess"], [23, 3, 1, "", "read_all_segmentation_logs"], [23, 3, 1, "", "read_converted_data"], [23, 3, 1, "", "read_preprocessed_data"], [23, 3, 1, "", "read_quarantined_data"], [23, 3, 1, "", "run_pipeline"], [23, 3, 1, "", "segment_dataset"], [23, 3, 1, "", "segment_image"], [23, 3, 1, "", "set_verbosity"], [23, 3, 1, "", "update_logging"]], "pydicer": [[24, 0, 0, "-", "utils"]], "pydicer.utils": [[24, 1, 1, "", "add_structure_name_mapping"], [24, 1, 1, "", "copy_doc"], [24, 1, 1, "", "determine_dcm_datetime"], [24, 1, 1, "", "download_and_extract_zip_file"], [24, 1, 1, "", "fetch_converted_test_data"], [24, 1, 1, "", "get_iterator"], [24, 1, 1, "", "get_structures_linked_to_dose"], [24, 1, 1, "", "hash_uid"], [24, 1, 1, "", "load_dvh"], [24, 1, 1, "", "load_object_metadata"], [24, 1, 1, "", "map_structure_name"], [24, 1, 1, "", "parse_patient_kwarg"], [24, 1, 1, "", "read_converted_data"], [24, 1, 1, "", "read_preprocessed_data"], [24, 1, 1, "", "read_simple_itk_image"]], "pydicer.visualise": [[25, 0, 0, "-", "data"]], "pydicer.visualise.data": [[25, 2, 1, "", "VisualiseData"]], "pydicer.visualise.data.VisualiseData": [[25, 3, 1, "", "visualise"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"]}, "titleterms": {"auto": [0, 18], "segment": [0, 18], "infer": 0, "analysi": 0, "setup": [0, 2, 3, 5, 8, 9, 10, 11], "pydic": [0, 2, 3, 4, 5, 7, 8, 9, 10, 11, 19, 23], "prepar": [0, 3, 5, 11, 17], "atla": 0, "defin": [0, 3, 11], "function": [0, 3, 17], "run": [0, 5, 8], "read": [0, 9], "log": [0, 1], "comput": [0, 4, 7], "similar": 0, "fetch": [0, 2, 4, 5, 7], "metric": [0, 4], "perform": 0, "configur": [1, 14], "get": [1, 5, 19], "set": [1, 6, 17], "option": 1, "avail": 1, "verbos": 1, "frame": 1, "refer": 1, "fallback": 1, "linkag": 1, "enforc": [1, 13], "dcm": 1, "file": 1, "extens": 1, "interpol": 1, "miss": 1, "slice": 1, "ignor": 1, "duplic": [1, 11], "gener": [1, 6, 8, 18], "nrrd": 1, "colormap": 1, "convert": [2, 9, 19], "data": [2, 3, 4, 5, 6, 7, 8, 9, 11, 16], "some": [2, 5], "preprocess": [2, 22], "inspect": [2, 4, 11], "load": [2, 3, 9, 10], "datafram": [2, 3], "quarantin": 2, "dataset": [3, 5, 11, 17], "explor": 3, "dose": [3, 4, 6], "structur": [3, 6, 10, 11, 17, 19], "from": 3, "custom": 3, "initialis": [4, 7, 11], "object": [4, 5, 6, 7, 9, 11, 18], "dvh": 4, "start": [5, 19], "work": [5, 9, 10], "directori": [5, 19], "creat": 5, "pipelin": [5, 19], "analys": [5, 12], "imag": [6, 19], "radiom": 7, "default": 7, "specifi": 7, "track": 7, "metadata": [7, 9], "visualis": [8, 25], "singl": 8, "patient": 8, "avoid": 8, "re": 8, "iter": 9, "over": 9, "keep": 9, "onli": 9, "specif": 9, "header": [9, 16], "tag": 9, "all": 9, "determin": 9, "date": 9, "structureset": 10, "add": 10, "name": [10, 11], "map": 10, "subset": 10, "local": 10, "us": 10, "nnunet": [11, 21], "nnunetdataset": 11, "check": 11, "split": 11, "overlap": 11, "train": 11, "script": 11, "code": [13, 15], "conduct": 13, "our": 13, "pledg": 13, "standard": [13, 15], "respons": 13, "scope": 13, "guidelin": 13, "1": 13, "correct": 13, "2": 13, "warn": 13, "3": 13, "temporari": 13, "ban": 13, "4": 13, "perman": 13, "attribut": 13, "contribut": [15, 19], "git": 15, "poetri": 15, "autom": 15, "test": 15, "convers": 16, "rtstruct": 16, "pet": 16, "model": 18, "python": 19, "dicom": 19, "instal": 19, "support": 19, "modal": 19, "how": 19, "cite": 19, "author": 19, "input": 20, "util": 24}, "envversion": {"sphinx.domains.c": 2, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 8, "sphinx.domains.index": 1, "sphinx.domains.javascript": 2, "sphinx.domains.math": 2, "sphinx.domains.python": 3, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 57}, "alltitles": {"Auto-segmentation Inference & Analysis": [[0, "Auto-segmentation-Inference-&-Analysis"]], "Setup PyDicer": [[0, "Setup-PyDicer"], [2, "Setup-PyDicer"], [3, "Setup-PyDicer"], [8, "Setup-PyDicer"], [9, "Setup-PyDicer"], [10, "Setup-PyDicer"], [11, "Setup-PyDicer"]], "Prepare Atlas": [[0, "Prepare-Atlas"]], "Define Segmentation Function": [[0, "Define-Segmentation-Function"]], "Run Auto-segmentation": [[0, "Run-Auto-segmentation"]], "Read Segmentation Logs": [[0, "Read-Segmentation-Logs"]], "Auto-segmentation Analysis": [[0, "Auto-segmentation-Analysis"]], "Compute Similarity": [[0, "Compute-Similarity"]], "Fetch the similarity metrics": [[0, "Fetch-the-similarity-metrics"]], "Perform Analysis": [[0, "Perform-Analysis"]], "Configuration": [[1, "Configuration"], [14, "configuration"]], "Getting and Setting Options": [[1, "Getting-and-Setting-Options"]], "Options Available": [[1, "Options-Available"]], "Logging Verbosity": [[1, "Logging-Verbosity"]], "Frame of Reference Fallback Linkage": [[1, "Frame-of-Reference-Fallback-Linkage"]], "Enforce .dcm file extension": [[1, "Enforce-.dcm-file-extension"]], "Interpolate Missing Slices": [[1, "Interpolate-Missing-Slices"]], "Ignore Duplicate Slices": [[1, "Ignore-Duplicate-Slices"]], "Generate NRRD": [[1, "Generate-NRRD"]], "NRRD Colormap": [[1, "NRRD-Colormap"]], "Converting Data": [[2, "Converting-Data"]], "Fetch some data": [[2, "Fetch-some-data"], [5, "Fetch-some-data"]], "Preprocess": [[2, "Preprocess"]], "Inspect Preprocessed Data": [[2, "Inspect-Preprocessed-Data"]], "Convert Data": [[2, "Convert-Data"]], "Load Converted DataFrame": [[2, "Load-Converted-DataFrame"]], "Data Quarantine": [[2, "Data-Quarantine"]], "Dataset Preparation": [[3, "Dataset-Preparation"], [17, "dataset-preparation"]], "Explore data": [[3, "Explore-data"]], "Prepare dose data": [[3, "Prepare-dose-data"]], "Load prepared Dataset": [[3, "Load-prepared-Dataset"]], "Prepare Structure Dataset": [[3, "Prepare-Structure-Dataset"]], "Prepare Dataset from DataFrame": [[3, "Prepare-Dataset-from-DataFrame"]], "Define Custom Preparation Function": [[3, "Define-Custom-Preparation-Function"]], "Dose Metrics": [[4, "Dose-Metrics"]], "Fetch data": [[4, "Fetch-data"], [7, "Fetch-data"]], "Initialise PyDicer object": [[4, "Initialise-PyDicer-object"], [7, "Initialise-PyDicer-object"]], "Compute DVH": [[4, "Compute-DVH"]], "Inspect DVH": [[4, "Inspect-DVH"]], "Compute Dose Metrics": [[4, "Compute-Dose-Metrics"]], "Getting Started": [[5, "Getting-Started"], [19, "getting-started"]], "Setup working directory": [[5, "Setup-working-directory"]], "Create a PyDicer object": [[5, "Create-a-PyDicer-object"]], "Run the pipeline": [[5, "Run-the-pipeline"]], "Prepare a dataset": [[5, "Prepare-a-dataset"]], "Analyse the dataset": [[5, "Analyse-the-dataset"]], "Generating Data Objects": [[6, "Generating-Data-Objects"]], "Generate Dose Objects": [[6, "Generate-Dose-Objects"]], "Generate Structure Set Objects": [[6, "Generate-Structure-Set-Objects"]], "Generate Image Objects": [[6, "Generate-Image-Objects"]], "Compute Radiomics": [[7, "Compute-Radiomics"]], "Compute Default Radiomics": [[7, "Compute-Default-Radiomics"]], "Fetch computed Radiomics": [[7, "Fetch-computed-Radiomics"]], "Specify Radiomics to Compute": [[7, "Specify-Radiomics-to-Compute"]], "Track Metadata": [[7, "Track-Metadata"]], "Visualise Data": [[8, "Visualise-Data"], [8, "id1"]], "Run for a single patient": [[8, "Run-for-a-single-patient"]], "Avoid Re-generating Visualisation": [[8, "Avoid-Re-generating-Visualisation"]], "Working with Data": [[9, "Working-with-Data"]], "Read Converted Data": [[9, "Read-Converted-Data"]], "Iterating Over Objects": [[9, "Iterating-Over-Objects"]], "Loading Object Metadata": [[9, "Loading-Object-Metadata"]], "Keep only specific header tags": [[9, "Keep-only-specific-header-tags"]], "Loading metadata for all data objects": [[9, "Loading-metadata-for-all-data-objects"]], "Determine Date of Object": [[9, "Determine-Date-of-Object"]], "Working with Structures": [[10, "Working-with-Structures"]], "Load Structures with StructureSet": [[10, "Load-Structures-with-StructureSet"]], "Add Structure Name Mapping": [[10, "Add-Structure-Name-Mapping"]], "Subsets of Structures": [[10, "Subsets-of-Structures"]], "Local Structure Name Mappings": [[10, "Local-Structure-Name-Mappings"]], "Using Mappings in PyDicer": [[10, "Using-Mappings-in-PyDicer"]], "nnUNet Data Preparation": [[11, "nnUNet-Data-Preparation"]], "Setup nnUNet": [[11, "Setup-nnUNet"]], "Define Structures": [[11, "Define-Structures"]], "Initialise NNUNetDataset object": [[11, "Initialise-NNUNetDataset-object"]], "Inspect Dataset": [[11, "Inspect-Dataset"]], "Check Dataset": [[11, "Check-Dataset"]], "Split Dataset": [[11, "Split-Dataset"]], "Check for Duplicate Data": [[11, "Check-for-Duplicate-Data"]], "Check Structure Names": [[11, "Check-Structure-Names"]], "Check for Overlapping Structures": [[11, "Check-for-Overlapping-Structures"]], "Prepare nnUNet Dataset": [[11, "Prepare-nnUNet-Dataset"]], "Prepare nnUNet Training Scripts": [[11, "Prepare-nnUNet-Training-Scripts"]], "Analyse": [[12, "module-pydicer.analyse.data"]], "Code of Conduct": [[13, "code-of-conduct"]], "Our Pledge": [[13, "our-pledge"]], "Our Standards": [[13, "our-standards"]], "Enforcement Responsibilities": [[13, "enforcement-responsibilities"]], "Scope": [[13, "scope"]], "Enforcement": [[13, "enforcement"]], "Enforcement Guidelines": [[13, "enforcement-guidelines"]], "1. Correction": [[13, "correction"]], "2. Warning": [[13, "warning"]], "3. Temporary Ban": [[13, "temporary-ban"]], "4. Permanent Ban": [[13, "permanent-ban"]], "Attribution": [[13, "attribution"]], "Contributing": [[15, "contributing"], [19, "contributing"]], "Git": [[15, "git"]], "Poetry": [[15, "poetry"]], "Coding standards": [[15, "coding-standards"]], "Automated tests": [[15, "automated-tests"]], "Conversion": [[16, "conversion"]], "Data Conversion": [[16, "module-pydicer.convert.data"]], "Header Conversion": [[16, "module-pydicer.convert.headers"]], "RTSTRUCT Conversion": [[16, "module-pydicer.convert.rtstruct"]], "PET Conversion": [[16, "module-pydicer.convert.pt"]], "Prepare Dataset": [[17, "module-pydicer.dataset.preparation"]], "Preparation Functions": [[17, "module-pydicer.dataset.functions"]], "Structure Sets": [[17, "module-pydicer.dataset.structureset"]], "Generation": [[18, "generation"]], "Objects": [[18, "module-pydicer.generate.object"]], "Auto-segmentation": [[18, "module-pydicer.generate.segmentation"]], "Models": [[18, "module-pydicer.generate.models"]], "PyDicer: PYthon Dicom Image ConvertER": [[19, "pydicer-python-dicom-image-converter"]], "Installation": [[19, "installation"]], "Supported Modalities": [[19, "supported-modalities"]], "Directory Structure": [[19, "directory-structure"]], "Pipeline": [[19, "pipeline"]], "How to Cite": [[19, "how-to-cite"]], "Authors": [[19, "authors"]], "Input": [[20, "module-pydicer.input.filesystem"]], "nnUNet": [[21, "nnunet"]], "Preprocessing": [[22, "module-pydicer.preprocess.data"]], "PyDicer": [[23, "pydicer"]], "Utils": [[24, "module-pydicer.utils"]], "Visualisation": [[25, "module-pydicer.visualise.data"]]}, "indexentries": {"analysedata (class in pydicer.analyse.data)": [[12, "pydicer.analyse.data.AnalyseData"]], "compute_contour_similarity_metrics() (in module pydicer.analyse.compare)": [[12, "pydicer.analyse.compare.compute_contour_similarity_metrics"]], "compute_dose_metrics() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.compute_dose_metrics"]], "compute_dvh() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.compute_dvh"]], "compute_radiomics() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.compute_radiomics"]], "get_all_computed_radiomics_for_dataset() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.get_all_computed_radiomics_for_dataset"]], "get_all_dvhs_for_dataset() (pydicer.analyse.data.analysedata method)": [[12, "pydicer.analyse.data.AnalyseData.get_all_dvhs_for_dataset"]], "get_all_similarity_metrics_for_dataset() (in module pydicer.analyse.compare)": [[12, "pydicer.analyse.compare.get_all_similarity_metrics_for_dataset"]], "module": [[12, "module-pydicer.analyse.compare"], [12, "module-pydicer.analyse.data"], [16, "module-pydicer.convert.data"], [16, "module-pydicer.convert.headers"], [16, "module-pydicer.convert.pt"], [16, "module-pydicer.convert.rtstruct"], [17, "module-pydicer.dataset.functions"], [17, "module-pydicer.dataset.preparation"], [17, "module-pydicer.dataset.structureset"], [18, "module-pydicer.generate.models"], [18, "module-pydicer.generate.object"], [18, "module-pydicer.generate.segmentation"], [20, "module-pydicer.input.filesystem"], [20, "module-pydicer.input.orthanc"], [20, "module-pydicer.input.pacs"], [20, "module-pydicer.input.tcia"], [20, "module-pydicer.input.test"], [20, "module-pydicer.input.web"], [22, "module-pydicer.preprocess.data"], [24, "module-pydicer.utils"], [25, "module-pydicer.visualise.data"]], "prepare_similarity_metric_analysis() (in module pydicer.analyse.compare)": [[12, "pydicer.analyse.compare.prepare_similarity_metric_analysis"]], "pydicer.analyse.compare": [[12, "module-pydicer.analyse.compare"]], "pydicer.analyse.data": [[12, "module-pydicer.analyse.data"]], "pydicerconfig (class in pydicer.config)": [[14, "pydicer.config.PyDicerConfig"]], "get_config() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.get_config"]], "get_working_dir() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.get_working_dir"]], "save_config() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.save_config"]], "set_config() (pydicer.config.pydicerconfig method)": [[14, "pydicer.config.PyDicerConfig.set_config"]], "convertdata (class in pydicer.convert.data)": [[16, "pydicer.convert.data.ConvertData"]], "add_entry() (pydicer.convert.data.convertdata method)": [[16, "pydicer.convert.data.ConvertData.add_entry"]], "convert() (pydicer.convert.data.convertdata method)": [[16, "pydicer.convert.data.ConvertData.convert"]], "convert_dicom_headers() (in module pydicer.convert.headers)": [[16, "pydicer.convert.headers.convert_dicom_headers"]], "convert_dicom_to_nifti_pt() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.convert_dicom_to_nifti_pt"]], "convert_rtstruct() (in module pydicer.convert.rtstruct)": [[16, "pydicer.convert.rtstruct.convert_rtstruct"]], "get_object_type() (in module pydicer.convert.data)": [[16, "pydicer.convert.data.get_object_type"]], "get_physical_values_pt() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_physical_values_pt"]], "get_sitk_volume_from_np() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_sitk_volume_from_np"]], "get_suv_from_bqml() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_suv_from_bqml"]], "get_suv_philips() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.get_suv_philips"]], "handle_missing_slice() (in module pydicer.convert.data)": [[16, "pydicer.convert.data.handle_missing_slice"]], "is_approx_equal() (in module pydicer.convert.pt)": [[16, "pydicer.convert.pt.is_approx_equal"]], "link_via_frame_of_reference() (in module pydicer.convert.data)": [[16, "pydicer.convert.data.link_via_frame_of_reference"]], "pydicer.convert.data": [[16, "module-pydicer.convert.data"]], "pydicer.convert.headers": [[16, "module-pydicer.convert.headers"]], "pydicer.convert.pt": [[16, "module-pydicer.convert.pt"]], "pydicer.convert.rtstruct": [[16, "module-pydicer.convert.rtstruct"]], "write_nrrd_from_mask_directory() (in module pydicer.convert.rtstruct)": [[16, "pydicer.convert.rtstruct.write_nrrd_from_mask_directory"]], "preparedataset (class in pydicer.dataset.preparation)": [[17, "pydicer.dataset.preparation.PrepareDataset"]], "structureset (class in pydicer.dataset.structureset)": [[17, "pydicer.dataset.structureset.StructureSet"]], "add_object_to_dataset() (pydicer.dataset.preparation.preparedataset method)": [[17, "pydicer.dataset.preparation.PrepareDataset.add_object_to_dataset"]], "get_mapped_structure_name() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.get_mapped_structure_name"]], "get_mapping_for_structure_set() (in module pydicer.dataset.structureset)": [[17, "pydicer.dataset.structureset.get_mapping_for_structure_set"]], "get_standardised_structure_name() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.get_standardised_structure_name"]], "get_unmapped_structures() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.get_unmapped_structures"]], "items() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.items"]], "keys() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.keys"]], "prepare() (pydicer.dataset.preparation.preparedataset method)": [[17, "pydicer.dataset.preparation.PrepareDataset.prepare"]], "prepare_from_dataframe() (pydicer.dataset.preparation.preparedataset method)": [[17, "pydicer.dataset.preparation.PrepareDataset.prepare_from_dataframe"]], "pydicer.dataset.functions": [[17, "module-pydicer.dataset.functions"]], "pydicer.dataset.preparation": [[17, "module-pydicer.dataset.preparation"]], "pydicer.dataset.structureset": [[17, "module-pydicer.dataset.structureset"]], "rt_latest_dose() (in module pydicer.dataset.functions)": [[17, "pydicer.dataset.functions.rt_latest_dose"]], "rt_latest_struct() (in module pydicer.dataset.functions)": [[17, "pydicer.dataset.functions.rt_latest_struct"]], "values() (pydicer.dataset.structureset.structureset method)": [[17, "pydicer.dataset.structureset.StructureSet.values"]], "add_dose_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_dose_object"]], "add_image_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_image_object"]], "add_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_object"]], "add_structure_object() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.add_structure_object"]], "get_available_mhub_models() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.get_available_mhub_models"]], "get_linked_for_and_ref_uid() (in module pydicer.generate.object)": [[18, "pydicer.generate.object.get_linked_for_and_ref_uid"]], "get_segmentation_log_path() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.get_segmentation_log_path"]], "load_output_nifti() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.load_output_nifti"]], "pydicer.generate.models": [[18, "module-pydicer.generate.models"]], "pydicer.generate.object": [[18, "module-pydicer.generate.object"]], "pydicer.generate.segmentation": [[18, "module-pydicer.generate.segmentation"]], "read_all_segmentation_logs() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.read_all_segmentation_logs"]], "read_segmentation_log() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.read_segmentation_log"]], "run_mhub_model() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.run_mhub_model"]], "run_total_segmentator() (in module pydicer.generate.models)": [[18, "pydicer.generate.models.run_total_segmentator"]], "segment_dataset() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.segment_dataset"]], "segment_image() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.segment_image"]], "write_autoseg_log() (in module pydicer.generate.segmentation)": [[18, "pydicer.generate.segmentation.write_autoseg_log"]], "dicompacsinput (class in pydicer.input.pacs)": [[20, "pydicer.input.pacs.DICOMPACSInput"]], "filesysteminput (class in pydicer.input.filesystem)": [[20, "pydicer.input.filesystem.FileSystemInput"]], "orthancinput (class in pydicer.input.orthanc)": [[20, "pydicer.input.orthanc.OrthancInput"]], "tciainput (class in pydicer.input.tcia)": [[20, "pydicer.input.tcia.TCIAInput"]], "testinput (class in pydicer.input.test)": [[20, "pydicer.input.test.TestInput"]], "webinput (class in pydicer.input.web)": [[20, "pydicer.input.web.WebInput"]], "adapt_dataset_from_bytes() (in module pydicer.input.orthanc)": [[20, "pydicer.input.orthanc.adapt_dataset_from_bytes"]], "fetch_data() (pydicer.input.orthanc.orthancinput method)": [[20, "pydicer.input.orthanc.OrthancInput.fetch_data"]], "fetch_data() (pydicer.input.pacs.dicompacsinput method)": [[20, "pydicer.input.pacs.DICOMPACSInput.fetch_data"]], "fetch_data() (pydicer.input.tcia.tciainput method)": [[20, "pydicer.input.tcia.TCIAInput.fetch_data"]], "fetch_data() (pydicer.input.web.webinput method)": [[20, "pydicer.input.web.WebInput.fetch_data"]], "pydicer.input.filesystem": [[20, "module-pydicer.input.filesystem"]], "pydicer.input.orthanc": [[20, "module-pydicer.input.orthanc"]], "pydicer.input.pacs": [[20, "module-pydicer.input.pacs"]], "pydicer.input.tcia": [[20, "module-pydicer.input.tcia"]], "pydicer.input.test": [[20, "module-pydicer.input.test"]], "pydicer.input.web": [[20, "module-pydicer.input.web"]], "nnunetdataset (class in pydicer.dataset.nnunet)": [[21, "pydicer.dataset.nnunet.NNUNetDataset"]], "add_testing_cases() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.add_testing_cases"]], "check_dataset() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_dataset"]], "check_duplicates_train_test() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_duplicates_train_test"]], "check_overlapping_structures() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_overlapping_structures"]], "check_structure_names() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.check_structure_names"]], "generate_training_scripts() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.generate_training_scripts"]], "prep_label_map_from_one_hot() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.prep_label_map_from_one_hot"]], "prepare_dataset() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.prepare_dataset"]], "split_dataset() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.split_dataset"]], "train() (pydicer.dataset.nnunet.nnunetdataset method)": [[21, "pydicer.dataset.nnunet.NNUNetDataset.train"]], "preprocessdata (class in pydicer.preprocess.data)": [[22, "pydicer.preprocess.data.PreprocessData"]], "preprocess() (pydicer.preprocess.data.preprocessdata method)": [[22, "pydicer.preprocess.data.PreprocessData.preprocess"]], "pydicer.preprocess.data": [[22, "module-pydicer.preprocess.data"]], "scan_file() (pydicer.preprocess.data.preprocessdata method)": [[22, "pydicer.preprocess.data.PreprocessData.scan_file"]], "pydicer (class in pydicer.tool)": [[23, "pydicer.tool.PyDicer"]], "add_dose_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_dose_object"]], "add_image_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_image_object"]], "add_input() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_input"]], "add_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_object"]], "add_structure_name_mapping() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_structure_name_mapping"]], "add_structure_object() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.add_structure_object"]], "get_structures_linked_to_dose() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.get_structures_linked_to_dose"]], "preprocess() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.preprocess"]], "read_all_segmentation_logs() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_all_segmentation_logs"]], "read_converted_data() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_converted_data"]], "read_preprocessed_data() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_preprocessed_data"]], "read_quarantined_data() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.read_quarantined_data"]], "run_pipeline() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.run_pipeline"]], "segment_dataset() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.segment_dataset"]], "segment_image() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.segment_image"]], "set_verbosity() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.set_verbosity"]], "update_logging() (pydicer.tool.pydicer method)": [[23, "pydicer.tool.PyDicer.update_logging"]], "add_structure_name_mapping() (in module pydicer.utils)": [[24, "pydicer.utils.add_structure_name_mapping"]], "copy_doc() (in module pydicer.utils)": [[24, "pydicer.utils.copy_doc"]], "determine_dcm_datetime() (in module pydicer.utils)": [[24, "pydicer.utils.determine_dcm_datetime"]], "download_and_extract_zip_file() (in module pydicer.utils)": [[24, "pydicer.utils.download_and_extract_zip_file"]], "fetch_converted_test_data() (in module pydicer.utils)": [[24, "pydicer.utils.fetch_converted_test_data"]], "get_iterator() (in module pydicer.utils)": [[24, "pydicer.utils.get_iterator"]], "get_structures_linked_to_dose() (in module pydicer.utils)": [[24, "pydicer.utils.get_structures_linked_to_dose"]], "hash_uid() (in module pydicer.utils)": [[24, "pydicer.utils.hash_uid"]], "load_dvh() (in module pydicer.utils)": [[24, "pydicer.utils.load_dvh"]], "load_object_metadata() (in module pydicer.utils)": [[24, "pydicer.utils.load_object_metadata"]], "map_structure_name() (in module pydicer.utils)": [[24, "pydicer.utils.map_structure_name"]], "parse_patient_kwarg() (in module pydicer.utils)": [[24, "pydicer.utils.parse_patient_kwarg"]], "pydicer.utils": [[24, "module-pydicer.utils"]], "read_converted_data() (in module pydicer.utils)": [[24, "pydicer.utils.read_converted_data"]], "read_preprocessed_data() (in module pydicer.utils)": [[24, "pydicer.utils.read_preprocessed_data"]], "read_simple_itk_image() (in module pydicer.utils)": [[24, "pydicer.utils.read_simple_itk_image"]], "visualisedata (class in pydicer.visualise.data)": [[25, "pydicer.visualise.data.VisualiseData"]], "pydicer.visualise.data": [[25, "module-pydicer.visualise.data"]], "visualise() (pydicer.visualise.data.visualisedata method)": [[25, "pydicer.visualise.data.VisualiseData.visualise"]]}}) \ No newline at end of file