From a183b987322e63ca5b8e104afa959a3fa3bcaa5f Mon Sep 17 00:00:00 2001 From: Kevin Peng Date: Mon, 6 Aug 2018 21:07:50 -0700 Subject: [PATCH] First draft of ElasticAverageCollideBinder --- .../binder/ElasticAverageCollideBinder.scala | 273 ++++++++++++++++++ 1 file changed, 273 insertions(+) create mode 100644 src/main/scala/BIDMach/allreduce/binder/ElasticAverageCollideBinder.scala diff --git a/src/main/scala/BIDMach/allreduce/binder/ElasticAverageCollideBinder.scala b/src/main/scala/BIDMach/allreduce/binder/ElasticAverageCollideBinder.scala new file mode 100644 index 00000000..337b821a --- /dev/null +++ b/src/main/scala/BIDMach/allreduce/binder/ElasticAverageCollideBinder.scala @@ -0,0 +1,273 @@ +package BIDMach.allreduce.binder + +import java.util.ArrayDeque +import java.util.concurrent.atomic.AtomicInteger +import java.util.logging.Logger +import scala.util.Random + +import BIDMach.allreduce.binder.AllreduceBinder.{DataSink, DataSource} +//import BIDMach.models.Model +import BIDMach.updaters.Grad +import BIDMat.{Mat, FMat, GMat} + + +/** + * Linearize input model mats, and elastic-average update to the same model. + * Perform momentum exchange among several nodes in a cluster, preserving total energy of the nodes. + * + * @param model + * @param alphaFromIter + */ +// FIXME: should get rndseed, node num and # nodes from worker +class ElasticAverageCollideBinder(updater: Grad, alphaFromIter: Int => Float, hardness: Float, rndseed: Long, inode: Int, + nnodes: Int, logger: Logger) extends AllreduceBinder { + + val model = updater.model + // Keeping track of elastic updates + var tic = System.currentTimeMillis() + val reduceCount = new AtomicInteger() + + val random = new Random(rndseed) + // TODO: make these GMats when applicable + val rawRandVecs = new Array[Array[FMat]](nnodes) + val randVecs = new Array[Array[FMat]](nnodes) + val randVecSqNorms = new Array[Array[Float]](nnodes) + var rvOffset = 0 + // TODO: think about GMats too + val aelem = FMat(1, 1) + + // TODO: make this more efficient by making use of functionality in SciFunctions etc. + def genRandomVector(out: FMat) = { + var i = 0 + val len = out.length + while (i < len) { + out.data(i) = random.nextGaussian().toFloat + } + } + + def dotprod(a:Mat, b:Mat):Float = { + aelem ~ a.contents dot b.contents + aelem.dv.toFloat; + } + + // TODO: is synchronization necessary to get updater momentum lengths + def initRandVecs = { + if (rawRandVecs(0) eq null) { + for (i <- 0 until nnodes) { + rawRandVecs(i) = new Array(updater.momentum.length) + + for ((pm, i) <- updater.momentum.iterator.zipWithIndex) { + val fmat = FMat.make(pm.dims) + genRandomVector(fmat.contents()) + pm match { + case _: GMat => rawRandVecs(0)(i) = GMat(fmat) + case _: FMat => rawRandVecs(0)(i) = fmat + } + } + + randVecs(i) = new Array(updater.momentum.length) + randVecSqNorms(i) = new Array(updater.momentum.length) + for (j <- 0 until updater.momentum.length) { + randVecs(i)(j) = rawRandVecs(i)(j) - rawRandVecs((i + 1) % nnodes)(j) + randVecSqNorms(i)(j) = dotprod(randVecs(i)(j), randVecs(i)(j)) + } + } + } + } + + def rotateRndVecs = { + val prevOffset = (rvOffset + nnodes - 1) % nnodes + + for (randMat <- rawRandVecs(rvOffset)) { + randMat match { + case gmat: GMat => + val fmat = FMat.make(randMat.dims) + genRandomVector(fmat) + gmat <-- fmat + case fmat: FMat => genRandomVector(fmat) + } + } + + for (offset <- Array(prevOffset, rvOffset)) { + val nextOffset = (offset + 1) % nnodes + for ((v1, v2) <- randVecs(offset) zip randVecs(nextOffset)) { + v1 ~ v1 - v2 + } + for ((v, i) <- randVecs(offset).iterator.zipWithIndex) { + randVecSqNorms(offset)(i) = dotprod(v, v) + } + } + + rvOffset += 1 + if (rvOffset == nnodes) rvOffset = 0 + } + + override lazy val totalDataSize: Int = { + var ret = 0 + updater.momentum.synchronized { + // Momentum mats + for (p <- updater.momentum) ret += p.length + // Squared magnitudes of momentum mats + ret += updater.momentum.length + // Dot product of momentum mats and random mats + ret += updater.momentum.length + } + // Model mats + model.modelmats.synchronized { + for (mat <- model.modelmats) ret += mat.length + } + ret + } + + override def dataSource: DataSource = inputRequest => { + initRandVecs + + val ret: Array[Float] = new Array[Float](totalDataSize) + var current = totalDataSize + val myRandVecs = randVecs((rvOffset + inode) % nnodes) + + // TODO: do we need to lock on the model and updater mats + + // backward traversing model mats, assuming forward traversal by the training model + for (mm <- model.modelmats.reverseIterator) { + current -= mm.length + mm match { + case gmat: GMat => GMat.GPUtoCPUarraycopy(gmat.pdata, 0, ret, current, gmat.length, "ElasticAverageBinder dataSource") + case fmat: FMat => System.arraycopy(fmat.contents().data, 0, ret, current, fmat.length) + } + } + + // dot product of momentum and random vectors + // backward traversing update mats, assuming forward traversal by updater + for ((pm, r) <- updater.momentum.reverseIterator zip myRandVecs.reverseIterator) { + current -= 1 + ret(current) = dotprod(pm, r) + } + + // squared norm of momentums + for (pm <- updater.momentum.reverseIterator) { + current -= 1 + ret(current) = dotprod(pm, pm) + } + + // backward traversing update mats, assuming forward traversal by updater + for (pm <- updater.momentum.reverseIterator) { + current -= pm.length + pm match { + case gmat: GMat => GMat.GPUtoCPUarraycopy(gmat.pdata, 0, ret, current, gmat.length, "ElasticAverageBinder dataSource") + case fmat: FMat => System.arraycopy(fmat.contents().data, 0, ret, current, fmat.length) + } + } + + assert(current == 0, "current should be zero after iteration") + + AllReduceInput(ret) + + } + + + + override def dataSink: DataSink = reducedOutput => { + + reduceCount.synchronized { + val currentCount: Int = reduceCount.getAndIncrement() + val updateCounts = 10 + if (currentCount % updateCounts == 0) { + val toc = System.currentTimeMillis() + if (currentCount > 0) { + logger.info(f"elastic_updates/s=${updateCounts/((toc - tic) / 1.0e3)}%2.2f, total_updates=$currentCount") + } + tic = toc + } + } + val reducedData = reducedOutput.data + + assert(reducedData.length == totalDataSize, "Reduced output should be same length as input") + + // backward traversing model mats, assuming forward traversal by the training model + // using while instead of for loop due to performance + var current = totalDataSize + val alpha = alphaFromIter(reducedOutput.iteration) + + for (mm <- model.modelmats.reverseIterator) { + current -= mm.length + mm.synchronized { + mm match { + case gmat: GMat => + val gReduced = GMat.make(gmat.dims) + GMat.CPUtoGPUarraycopy(reducedData, current, gReduced.pdata, 0, gmat.length, "ElasticAverageCollideBinder dataSink") + gReduced ~ gReduced / aelem.set(nnodes) + gmat ~ gmat * aelem.set(1 - alpha) + gReduced ~ gReduced * aelem.set(alpha) + gmat ~ gReduced + gmat + gReduced.free() + case fmat: FMat => + val fReduced = FMat.make(fmat.dims) + System.arraycopy(reducedData, current, fReduced.contents().data, 0, fmat.length) + fReduced ~ fReduced / aelem.set(nnodes) + fmat ~ fmat * aelem.set(1 - alpha) + fReduced ~ fReduced * aelem.set(alpha) + fmat ~ fReduced + fmat + } + } + } + + val sumPmR = new Array[Float](updater.modelmats.length) + current -= updater.modelmats.length + System.arraycopy(reducedData, current, sumPmR, 0, updater.modelmats.length) + + val sumPmPm = new Array[Float](updater.modelmats.length) + current -= updater.modelmats.length + System.arraycopy(reducedData, current, sumPmPm, 0, updater.modelmats.length) + + val meanP = new Array[Mat](updater.modelmats.length) + for (i <- updater.modelmats.length - 1 to 0 by -1) { + current -= updater.modelmats(i).length + val pbar = updater.modelmats(i) match { + case _: GMat => + val pbar = GMat.make(updater.modelmats(i).dims) + GMat.CPUtoGPUarraycopy(reducedData, current, pbar.pdata, 0, updater.modelmats(i).length, "ElasticAverageCollideBinder dataSink") + pbar + case _: FMat => + val pbar = FMat.make(updater.modelmats(i).dims) + System.arraycopy(reducedData, current, pbar.contents().data, 0, updater.modelmats(i).length) + pbar + } + pbar ~ pbar / aelem.set(nnodes) + meanP(i) = pbar + } + + assert(current == 0, "current should be zero after iteration") + + for (j <- updater.modelmats.length - 1 to 0 by -1) { + // TODO: not hold the lock for 1293579813753 years, but also avoid data races + updater.modelmats(j) synchronized { + val x = meanP(j) - updater.modelmats(j) + x ~ x * aelem.set(hardness) + x ~ x + updater.modelmats(j) + + val sumC = randVecs(0)(j).zerosLike + for (i <- 0 until nnodes) sumC ~ sumC + randVecs(i)(j) + val sumXR = (1 - hardness) * sumPmR(j) + hardness * dotprod(meanP(j), sumC) + val sumXX = (1 - hardness * hardness) * sumPmPm(j) - nnodes * (hardness - 1) * (hardness - 1) * dotprod(meanP(j), meanP(j)) + + val twoSumXR = 2 * sumXR + val sumRR = randVecSqNorms.map(_(j)).reduce(_ + _) + // Discriminant should always be positive for any hardness in [0, 1] (actually, [0, 2]) + val discr = twoSumXR*twoSumXR - 4*sumRR*(sumXX - sumPmPm(j)) + val epsilon = 1e-36f + val beta = if (Mat.myrand.nextFloat() < 0.5f) { + (-twoSumXR + math.sqrt(discr).toFloat) / (2 * sumRR + epsilon) + } else { + (-twoSumXR - math.sqrt(discr).toFloat) / (2 * sumRR + epsilon) + } + + updater.modelmats(j) ~ x - aelem.set(beta) * randVecs((rvOffset + inode) % nnodes)(j) + } + } + + rotateRndVecs + } + +} +