-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
207 lines (170 loc) · 7.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import json
import numpy as np
from argparse import ArgumentParser
import torch
from torch.utils.data import DataLoader
# baseline model
from src.model import build_model
from src.utils import train
from src.dataset import collate_fn, Small_dataset, prepocessing
# albumentation
import cv2
import albumentations as A
from albumentations.pytorch.transforms import ToTensorV2
# nsml
import nsml
from nsml import DATASET_PATH
# multi-gpu
import torch.distributed as dist
from torch.utils.data.distributed import DistributedSampler
# wbf
from ensemble_boxes import *
# IMAGE SIZE
IMAGE_SIZE = 1024
# only infer
def test_preprocessing(img, transform=None):
# [참가자 TO-DO] inference를 위한 이미지 데이터 전처리
if transform is not None:
img = transform(image=img)['image']
img = img.unsqueeze(0)
return img
def bind_model(model):
def save(dir_path, **kwargs):
torch.save(model.module.state_dict(), os.path.join(dir_path, 'model.pt'))
print("model saved!")
def load(dir_path):
checkpoint = torch.load(os.path.join(dir_path, 'model.pt'))
model.load_state_dict(checkpoint)
print('model loaded!')
def get_test_transform():
return A.Compose([
A.Resize(IMAGE_SIZE, IMAGE_SIZE),
ToTensorV2(p=1.0)
])
def run_wbf(pred, iou_thr=0.5, skip_box_thr=0.05, weights=None):
boxes = (pred['boxes']/1024.).tolist()
scores = pred['scores'].tolist()
labels = pred['labels'].tolist()
boxes, scores, labels = weighted_boxes_fusion([boxes], [scores], [labels], weights=None, iou_thr=iou_thr, skip_box_thr=skip_box_thr)
return boxes, scores, labels
def infer(test_img_path_list): # data_loader에서 인자 받음
'''
반환 형식 준수해야 정상적으로 score가 기록됩니다.
{'file_name':[[cls_num, x, y, w, h, conf]]}
'''
result_dict = {}
# for baseline model ==============================
from tqdm import tqdm
model.cuda()
model.eval()
for _, file_path in enumerate(tqdm(test_img_path_list)):
file_name = file_path.split("/")[-1]
img = cv2.imread(file_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype(np.float32)
#img /= 255.0
width = img.shape[1]
height = img.shape[0]
img = test_preprocessing(img, get_test_transform())
img = img.cuda()
detections = []
count = 0
with torch.no_grad():
pred = model(img)[0]
try:
boxes, scores, labels = run_wbf(pred, iou_thr=0.5, skip_box_thr=0.05)
except:
continue
'''
wbf_pred = []
wbf_pred.append(boxes)
wbf_pred.append(scores)
wbf_pred.append(labels)
wbf_pred = np.array(wbf_pred)
wbf_pred = np.transpose(wbf_pred)
wbf_pred = sorted(wbf_pred, key=lambda x:x[1], reverse=True)
wbf_pred = np.transpose(wbf_pred)
wbf_pred = [list(t) for t in wbf_pred]
boxes, scores, labels = wbf_pred
'''
for box_, score_, label_ in zip(boxes, scores, labels):
try:
detections.append([
int(label_)-1,
float( box_[0] * width ),
float( box_[1] * height ),
float( (box_[2] - box_[0]) * width ),
float( (box_[3] - box_[1]) * height ),
float( score_ )
])
except:
continue
result_dict[file_name] = detections # 반환 형식 준수해야 함
return result_dict
# DONOTCHANGE: They are reserved for nsml
nsml.bind(save=save, load=load, infer=infer)
def get_args():
parser = ArgumentParser(description="NSML BASELINE")
parser.add_argument("--epochs", type=int, default=20, help="number of total epochs to run")
parser.add_argument("--batch-size", type=int, default=4, help="number of samples for each iteration")
parser.add_argument("--lr", type=float, default=0.001, help="initial learning rate")
parser.add_argument("--nms-threshold", type=float, default=0.5)
parser.add_argument("--num-workers", type=int, default=0)
# DONOTCHANGE: They are reserved for nsml
parser.add_argument("--pause", type=int, default=0)
parser.add_argument('--mode', type=str, default='train', help='submit일때 test로 설정됩니다.')
parser.add_argument('--iteration', type=str, default='0', help='fork 명령어를 입력할때의 체크포인트로 설정됩니다.')
args = parser.parse_args()
return args
def get_train_transform():
return A.Compose([
A.Resize(1024,1024),
A.HorizontalFlip(p=0.5),
A.RandomRotate90(p=0.3),
A.VerticalFlip(p=0.4),
ToTensorV2(p=1.0)
], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})
def sub_main(opt):
n_gpus = torch.cuda.device_count()
torch.multiprocessing.spawn(main, nprocs=n_gpus, args=(opt, n_gpus, ))
def main(gpu, opt, n_gpus):
opt.dist_url = "tcp://127.0.0.1:3333"
torch.cuda.empty_cache()
torch.distributed.init_process_group(backend='nccl', init_method=opt.dist_url, world_size=n_gpus, rank=gpu)
torch.manual_seed(41)
num_class = 30 # 순수한 데이터셋 클래스 개수
# define model
model = build_model(num_classes=num_class+1) # 배경 class 포함 모델
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
if opt.pause:
bind_model(model)
nsml.paused(scope=locals())
else:
# train data
with open(os.path.join(DATASET_PATH, 'train', 'train_label'), 'r', encoding="utf-8") as f:
train_data_dict = json.load(f)
train_img_label = prepocessing(root_dir=os.path.join(DATASET_PATH, 'train', 'train_data'),\
label_data=train_data_dict, input_size=(IMAGE_SIZE, IMAGE_SIZE))
train_data = Small_dataset(train_img_label, get_train_transform())
sampler = DistributedSampler(train_data)
train_params = {"batch_size": opt.batch_size,
"sampler": sampler,
"drop_last": False,
"num_workers": opt.num_workers,
"collate_fn": collate_fn}
train_loader = DataLoader(train_data, **train_params)
model.cuda(gpu)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
bind_model(model)
for epoch in range(0, opt.epochs):
train_loss = train(model, train_loader, epoch, optimizer, scheduler, gpu)
nsml.report(
epoch=epoch,
epoch_total=opt.epochs,
batch_size=opt.batch_size,
train_loss=train_loss)
nsml.save(epoch)
if __name__ == "__main__":
opt = get_args()
sub_main(opt)