-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
162 lines (141 loc) · 6.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
import torch
import sys
import time
import os.path as osp
import numpy as np
from tensorboardX import SummaryWriter
from tools.options import Options
from network.atloc import AtLoc, AtLocPlus
from torchvision import transforms, models
from tools.utils import AtLocCriterion, AtLocPlusCriterion, AverageMeter, Logger
from data.dataloaders import SevenScenes, RobotCar, MF
from torch.utils.data import DataLoader
from torch.autograd import Variable
# Config
opt = Options().parse()
cuda = torch.cuda.is_available()
device = "cuda:" + ",".join(str(i) for i in opt.gpus) if cuda else "cpu"
logfile = osp.join(opt.runs_dir, 'log.txt')
stdout = Logger(logfile)
print('Logging to {:s}'.format(logfile))
sys.stdout = stdout
# Model
feature_extractor = models.resnet34(pretrained=True)
atloc = AtLoc(feature_extractor, droprate=opt.train_dropout, pretrained=True, lstm=opt.lstm)
if opt.model == 'AtLoc':
model = atloc
train_criterion = AtLocCriterion(saq=opt.beta, learn_beta=True)
val_criterion = AtLocCriterion()
param_list = [{'params': model.parameters()}]
elif opt.model == 'AtLocPlus':
model = AtLocPlus(atlocplus=atloc)
kwargs = dict(saq=opt.beta, srq=opt.gamma, learn_beta=True, learn_gamma=True)
train_criterion = AtLocPlusCriterion(**kwargs)
val_criterion = AtLocPlusCriterion()
else:
raise NotImplementedError
# Optimizer
param_list = [{'params': model.parameters()}]
if hasattr(train_criterion, 'sax') and hasattr(train_criterion, 'saq'):
print('learn_beta')
param_list.append({'params': [train_criterion.sax, train_criterion.saq]})
if opt.gamma is not None and hasattr(train_criterion, 'srx') and hasattr(train_criterion, 'srq'):
print('learn_gamma')
param_list.append({'params': [train_criterion.srx, train_criterion.srq]})
optimizer = torch.optim.Adam(param_list, lr=opt.lr, weight_decay=opt.weight_decay)
stats_file = osp.join(opt.data_dir, opt.dataset, opt.scene, 'stats.txt')
stats = np.loadtxt(stats_file)
tforms = [transforms.Resize(opt.cropsize)]
tforms.append(transforms.RandomCrop(opt.cropsize))
if opt.color_jitter > 0:
assert opt.color_jitter <= 1.0
print('Using ColorJitter data augmentation')
tforms.append(transforms.ColorJitter(brightness=opt.color_jitter, contrast=opt.color_jitter, saturation=opt.color_jitter, hue=0.5))
else:
print('Not Using ColorJitter')
tforms.append(transforms.ToTensor())
tforms.append(transforms.Normalize(mean=stats[0], std=np.sqrt(stats[1])))
data_transform = transforms.Compose(tforms)
target_transform = transforms.Lambda(lambda x: torch.from_numpy(x).float())
# Load the dataset
kwargs = dict(scene=opt.scene, data_path=opt.data_dir, transform=data_transform, target_transform=target_transform, seed=opt.seed)
if opt.model == 'AtLoc':
if opt.dataset == '7Scenes':
train_set = SevenScenes(train=True, **kwargs)
val_set = SevenScenes(train=False, **kwargs)
elif opt.dataset == 'RobotCar':
train_set = RobotCar(train=True, **kwargs)
val_set = RobotCar(train=False, **kwargs)
else:
raise NotImplementedError
elif opt.model == 'AtLocPlus':
kwargs = dict(kwargs, dataset=opt.dataset, skip=opt.skip, steps=opt.steps, variable_skip=opt.variable_skip)
train_set = MF(train=True, real=opt.real, **kwargs)
val_set = MF(train=False, real=opt.real, **kwargs)
else:
raise NotImplementedError
kwargs = {'num_workers': opt.nThreads, 'pin_memory': True} if cuda else {}
train_loader = DataLoader(train_set, batch_size=opt.batchsize, shuffle=True, **kwargs)
val_loader = DataLoader(val_set, batch_size=opt.batchsize, shuffle=False, **kwargs)
model.to(device)
train_criterion.to(device)
val_criterion.to(device)
total_steps = opt.steps
writer = SummaryWriter(log_dir=opt.runs_dir)
experiment_name = opt.exp_name
for epoch in range(opt.epochs):
if epoch % opt.val_freq == 0 or epoch == (opt.epochs - 1):
val_batch_time = AverageMeter()
val_loss = AverageMeter()
model.eval()
end = time.time()
val_data_time = AverageMeter()
for batch_idx, (val_data, val_target) in enumerate(val_loader):
val_data_time.update(time.time() - end)
val_data_var = Variable(val_data, requires_grad=False)
val_target_var = Variable(val_target, requires_grad=False)
val_data_var = val_data_var.to(device)
val_target_var = val_target_var.to(device)
with torch.set_grad_enabled(False):
val_output = model(val_data_var)
val_loss_tmp = val_criterion(val_output, val_target_var)
val_loss_tmp = val_loss_tmp.item()
val_loss.update(val_loss_tmp)
val_batch_time.update(time.time() - end)
writer.add_scalar('val_err', val_loss_tmp, total_steps)
if batch_idx % opt.print_freq == 0:
print('Val {:s}: Epoch {:d}\tBatch {:d}/{:d}\tData time {:.4f} ({:.4f})\tBatch time {:.4f} ({:.4f})\tLoss {:f}' \
.format(experiment_name, epoch, batch_idx, len(val_loader) - 1, val_data_time.val, val_data_time.avg, val_batch_time.val, val_batch_time.avg, val_loss_tmp))
end = time.time()
print('Val {:s}: Epoch {:d}, val_loss {:f}'.format(experiment_name, epoch, val_loss.avg))
if epoch % opt.save_freq == 0:
filename = osp.join(opt.models_dir, 'epoch_{:03d}.pth.tar'.format(epoch))
checkpoint_dict = {'epoch': epoch, 'model_state_dict': model.state_dict(), 'optim_state_dict': optimizer.state_dict(), 'criterion_state_dict': train_criterion.state_dict()}
torch.save(checkpoint_dict, filename)
print('Epoch {:d} checkpoint saved for {:s}'.format(epoch, experiment_name))
model.train()
train_data_time = AverageMeter()
train_batch_time = AverageMeter()
end = time.time()
for batch_idx, (data, target) in enumerate(train_loader):
train_data_time.update(time.time() - end)
data_var = Variable(data, requires_grad=True)
target_var = Variable(target, requires_grad=False)
data_var = data_var.to(device)
target_var = target_var.to(device)
with torch.set_grad_enabled(True):
output = model(data_var)
loss_tmp = train_criterion(output, target_var)
loss_tmp.backward()
optimizer.step()
optimizer.zero_grad()
train_batch_time.update(time.time() - end)
writer.add_scalar('train_err', loss_tmp.item(), total_steps)
if batch_idx % opt.print_freq == 0:
print('Train {:s}: Epoch {:d}\tBatch {:d}/{:d}\tData time {:.4f} ({:.4f})\tBatch time {:.4f} ({:.4f})\tLoss {:f}' \
.format(experiment_name, epoch, batch_idx, len(train_loader) - 1, train_data_time.val, train_data_time.avg, train_batch_time.val, train_batch_time.avg, loss_tmp.item()))
end = time.time()
writer.close()