-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil_functions.py
371 lines (319 loc) · 10.5 KB
/
util_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!/usr/bin/env python
import re
import gzip
import numpy as np
import xml.etree.ElementTree as ET
import logging
aa_3to1 = {
'CYS': 'C', 'ASP': 'D', 'SER': 'S', 'GLN': 'Q', 'LYS': 'K',
'ILE': 'I', 'PRO': 'P', 'THR': 'T', 'PHE': 'F', 'ASN': 'N',
'GLY': 'G', 'HIS': 'H', 'LEU': 'L', 'ARG': 'R', 'TRP': 'W',
'ALA': 'A', 'VAL': 'V', 'GLU': 'E', 'TYR': 'Y', 'MET': 'M'
#'GLX': 'Z', 'ASX': 'B', 'TER': '*', 'XAA': 'X'
}
aa_1to3 = {
'C': 'CYS', 'D': 'ASP', 'S': 'SER', 'Q': 'GLN', 'K': 'LYS',
'I': 'ILE', 'P': 'PRO', 'T': 'THR', 'F': 'PHE', 'N': 'ASN',
'G': 'GLY', 'H': 'HIS', 'L': 'LEU', 'R': 'ARG', 'W': 'TRP',
'A': 'ALA', 'V': 'VAL', 'E': 'GLU', 'Y': 'TYR', 'M': 'MET'
#'Z': 'GLX', 'B': 'ASX', '*': 'TER', 'X': 'XAA'
}
#######################################################
################ Residues Help Func #################
#######################################################
# check if a residue is not heteroatom
def is_good_res(res):
return res.id[0] == ' '
# extract the index of the residue (relative to pdb file)
def res_pdb_index(res):
return res.id[1]
# extract the insertion of the residue
def res_insertion_code(res):
return res.id[2]
# extract the id of the pdb from a residue
def res_pdb_id(res):
return res.get_full_id()[0]
# extract the id of the model from a residue
def res_model_id(res):
return res.get_full_id()[1]
# extract the id of the chain from a residue
def res_chain_id(res):
return res.get_full_id()[2]
def res_string_index(res):
if not res_insertion_code(res) == ' ':
return str(res_pdb_index(res)) + res_insertion_code(res)
return str(res_pdb_index(res))
def res_name_1_letter(res):
if res.get_resname() in aa_3to1.keys():
return aa_3to1[res.get_resname()]
else:
return 'X'
# check if given chain is a DNA chain
# (in some pdb files they are very long to compute and DSSP would print warnings)
def is_DNA(chain):
# for each residue (cicle it is the only way to access residue info from a chain)
for res in chain:
# get the first good residue
if is_good_res(res):
return is_dna_res(res)
# no good residue has been found, discard the chain anyway
return True
def is_dna_res(res):
# check if the residue name is one of nucleic acids names (If another different encoding is found add it in this list)
return res.get_resname() in [' DA','DU',' DT',' DG',' DC','A','U','T','G','C',' A',' U',' T',' G',' C']
def parse_missing_from_header(pdb_path):
file = open(pdb_path, 'r')
lines = file.read().splitlines()
missing = {}
found = False
for line in lines:
if re.match("^REMARK\s*465\s*[A-Z]{3}\s*\w\s*\d+\s*", line):
found = True
tokens = line.split()
missing.setdefault(tokens[3], [])
if re.match("^\d*$",tokens[4]):
missing[tokens[3]].append(int(tokens[4]))
else:
missing[tokens[3]].append(int(tokens[4][0:-1]))
elif found == True or re.match("^ATOM.*", line):
break
file.close()
return missing
# get the spatial center of the residue (mean between all atoms)
def get_center(residue):
cm = []
# collect coordinates of every atom in residue
for atom in residue:
cm.append(atom.get_coord())
# sum coord and divide for number of atoms
return np.sum(np.array(cm), axis=0) / len(cm)
def get_chain_center(residues):
cm = []
for residue in residues:
cm.append(get_center(residue))
return np.sum(np.array(cm), axis=0)/len(cm)
def get_chain_radius_error(residues):
center = get_chain_center(residues)
radius_list = []
for residue in residues:
radius_list.append(np.linalg.norm(center - get_center(residue)))
mean_radius = np.sum(np.array(radius_list), axis=0)/len(radius_list)
errors = []
for residue in residues:
errors.append((mean_radius-np.linalg.norm(center - get_center(residue)))/mean_radius)
return errors
def distance_3D(point_1, point_2):
return np.linalg.norm(point_1-point_2)
# compute distance between two residues
def compute_distance(res1, res2):
# initialize coordinates variables
a = 0
b = 0
# search for the Carbon Alpha atom and get coordinates
for atom in res1:
if atom.id == "CA":
a = atom.get_coord()
for atom in res2:
if atom.id == "CA":
b = atom.get_coord()
# return norm as the distance
return distance_3D(a, b)
# compute angle between three residues
def compute_angle(res1, res2, res3):
# initialize coordinates variables
a = 0
b = 0
c = 0
# search for the Carbon Alpha atom and get coordinates
for atom in res1:
if atom.id == "CA":
a = atom.get_coord()
for atom in res2:
if atom.id == "CA":
b = atom.get_coord()
for atom in res3:
if atom.id == "CA":
c = atom.get_coord()
# compute the edges ba and bc
ba = a - b
bc = c - b
# with a very small window can happens that one of the edges is 0
if (np.linalg.norm(ba) * np.linalg.norm(bc) == 0):
# print a warning and return a 90 degrees angle
print("Wrong arguments calculating angle between: {}, {}, {}".format(res1.get_full_id(),res2.get_full_id(),res3.get_full_id()))
return 90
# if not 0 compute and return angle
cosine_angle = np.dot(ba, bc) / (np.linalg.norm(ba) * np.linalg.norm(bc))
angle = np.arccos(cosine_angle)
return np.degrees(angle)
# fill gaps in predictions g is the maximum number of residues to consider a region as a gap
def gap_fill(chain_pred, g=0):
# if g = 0 retur the predictions as they are
if(g == 0):
return chain_pred
# start with the positives
for index in range(len(chain_pred)):
# if the residue in index position is positive
if chain_pred[index] == 1:
# init count with one residue
count = 1
#start from residue to the left
i = index - 1
# while the index is inside the chain and the prediction is 1 and the count is less or equal to g
while i >= 0 and chain_pred[i] == 1 and count <= g:
# increment count and move left
count += 1
i -= 1
# then go right
i = index + 1
# while the index is inside the chain and the prediction is 1 and the count is less or equal to g (can be greater already)
while i < len(chain_pred) and chain_pred[i] == 1 and count <= g:
# increment count and move right
count += 1
i += 1
# if the count is less or equal to g, it is a gap
if count <= g:
chain_pred[index] = 0
# for negatives is a little bit different (if at beginning or end it is not a gap)
for index in range(len(chain_pred)):
# if the residue in index position is negative
if chain_pred[index] == 0:
# init count with one residue
count = 1
#start from residue to the left
i = index - 1
# while the index is inside the chain and the prediction is 0 and the count is less or equal to g
while i >= 0 and chain_pred[i] == 0 and count <= g:
# increment count and move left
count += 1
i -= 1
# if the beginning has been reach i should be equal to -1. then leave the 0 as it is
if i < 0:
continue
# then go right
i = index + 1
# while the index is inside the chain and the prediction is 0 and the count is less or equal to g
while i < len(chain_pred) and chain_pred[i] == 0 and count <= g:
# increment count and move right
count += 1
i += 1
# if the end has been reach i should be equal to len(chain_pred). then leave the 0 as it is
if i >= len(chain_pred):
continue
# if beginning and end not reached and g is less or equal to gap number, set prediction to 1
if count <= g:
chain_pred[index] = 1
# return the gap_filled predictions
return chain_pred
def blur_predictions(chain_pred, w=0):
if(w == 0):
return chain_pred
new_pred = []
for index in range(len(chain_pred)):
start = max(0, index - w)
stop = min(len(chain_pred), index + w + 1)
new_pred.append(np.sum(chain_pred[start:stop])/(stop-start))
return np.array(new_pred)
def find_regions(labels):
regions = []
start = None
for l_idx in range(len(labels)):
if labels[l_idx] == '1' and start == None:
start = l_idx
if labels[l_idx] == '0' and start != None:
regions.append((start, l_idx-1))
start = None
if start != None:
regions.append((start, len(labels)-1))
return regions
def parse_mapping(file_path):
mapping = {}
tree = ET.parse(file_path)
root = tree.getroot()
# all item attributes
for elem in root:
if 'type' in elem.attrib and elem.attrib['type'] == "protein":
for segment in elem:
for residue in segment[0]:
pdb_idx = None
chain_id = None
uniprot_idx = None
uniprot_id = None
for entry in residue:
if entry.attrib["dbSource"] == "PDB" and not entry.attrib["dbResNum"] == "null":
pdb_idx = entry.attrib["dbResNum"]
chain_id = entry.attrib['dbChainId']
elif entry.attrib["dbSource"] == "UniProt":
uniprot_id = entry.attrib["dbAccessionId"]
uniprot_idx = entry.attrib["dbResNum"]
if chain_id and pdb_idx and uniprot_idx and uniprot_id:
mapping.setdefault(chain_id, {})
mapping[chain_id].setdefault(uniprot_id, {})
mapping[chain_id][uniprot_id][pdb_idx] = uniprot_idx
return mapping
def map_structure(structure, mapping):
for chain_id in mapping.keys():
chain = structure.chains.get(chain_id)
if chain:
for uniprot_id in mapping[chain_id].keys():
for pdb_idx in mapping[chain_id][uniprot_id]:
res = chain.get_by_id(pdb_idx)
if res:
res.uniprot_id = uniprot_id
res.uniprot_index = mapping[chain_id][uniprot_id][pdb_idx]
return mapping
def is_gz(file_path):
return file_path[-3:] == '.gz'
def get_suffix(file_path):
if is_gz(file_path):
return file_path[-7:-3]
else:
return file_path[-4:]
def extract_gz(path_from, path_to):
inputfile = gzip.GzipFile(path_from, 'rb')
s = inputfile.read()
inputfile.close()
outputfile = open(path_to, 'wb')
outputfile.write(s)
outputfile.close()
return
def make_gz(path_from, path_to):
inputfile = open(path_from, 'rb')
s = inputfile.read()
inputfile.close()
outputfile = gzip.GzipFile(path_to, 'wb')
outputfile.write(s)
outputfile.close()
return
def parse_pdb_id_from_file(file_path):
if '.ent' in file_path or '.pdb' in file_path:
file = open(file_path)
lines = file.read().splitlines()
for line in lines:
tokens = line.split()
if tokens[0] == "HEADER":
return tokens[-1].lower()
elif '.cif' in file_path:
file = open(file_path)
lines = file.read().splitlines()
for line in lines:
tokens = line.split()
if tokens[0] == "_entry.id":
return tokens[-1].lower()
else:
logging.warning("Can't extract PDB id from file " + file_path)
return 'noid'
def get_ranges(labels):
ranges = []
start = None
for idx in range(len(labels)):
if not start == None:
if labels[idx] == 0:
ranges.append((start, idx-1))
start = None
else:
if labels[idx] == 1:
start = idx
if not start == None:
ranges.append((start, len(labels)-1))
return ranges