-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP3_AHP.py
84 lines (69 loc) · 3.02 KB
/
P3_AHP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import numpy as np
import pandas as pd
import warnings
class AHP:
def __init__(self, criteria, b):
self.RI = (0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49)
self.criteria = criteria
self.b = b
self.num_criteria = criteria.shape[0]
self.num_project = b[0].shape[0]
def cal_weights(self, input_matrix):
input_matrix = np.array(input_matrix)
n, n1 = input_matrix.shape
assert n == n1, '不是一个方阵'
for i in range(n):
for j in range(n):
if np.abs(input_matrix[i, j] * input_matrix[j, i] - 1) > 1e-7:
raise ValueError('不是反互对称矩阵')
eigenvalues, eigenvectors = np.linalg.eig(input_matrix)
max_idx = np.argmax(eigenvalues)
max_eigen = eigenvalues[max_idx].real
eigen = eigenvectors[:, max_idx].real
eigen = eigen / eigen.sum()
if n > 9:
CR = None
warnings.warn('无法判断一致性')
else:
CI = (max_eigen - n) / (n - 1)
CR = CI / self.RI[n]
return max_eigen, CR, eigen
def run(self):
max_eigen, CR, criteria_eigen = self.cal_weights(self.criteria)
print('准则层:最大特征值{:<5f},CR={:<5f},检验{}通过'.format(max_eigen, CR, '' if CR < 0.1 else '不'))
print('准则层权重={}\n'.format(criteria_eigen))
max_eigen_list, CR_list, eigen_list = [], [], []
for i in self.b:
max_eigen, CR, eigen = self.cal_weights(i)
max_eigen_list.append(max_eigen)
CR_list.append(CR)
eigen_list.append(eigen)
pd_print = pd.DataFrame(eigen_list,
index=['准则' + str(i) for i in range(self.num_criteria)],
columns=['方案' + str(i) for i in range(self.num_project)],
)
pd_print.loc[:, '最大特征值'] = max_eigen_list
pd_print.loc[:, 'CR'] = CR_list
pd_print.loc[:, '一致性检验'] = pd_print.loc[:, 'CR'] < 0.1
print('方案层')
print(pd_print)
# 目标层
obj = np.dot(criteria_eigen.reshape(1, -1), np.array(eigen_list))
print('\n目标层', obj)
print('最优选择是方案{}'.format(np.argmax(obj)))
return obj
if __name__ == '__main__':
# 准则重要性矩阵
criteria = np.array([[1, 2, 7, 5, 5],
[1 / 2, 1, 4, 3, 3],
[1 / 7, 1 / 4, 1, 1 / 2, 1 / 3],
[1 / 5, 1 / 3, 2, 1, 1],
[1 / 5, 1 / 3, 3, 1, 1]])
# 对每个准则,方案优劣排序
b1 = np.array([[1, 1 / 3, 1 / 8], [3, 1, 1 / 3], [8, 3, 1]])
b2 = np.array([[1, 2, 5], [1 / 2, 1, 2], [1 / 5, 1 / 2, 1]])
b3 = np.array([[1, 1, 3], [1, 1, 3], [1 / 3, 1 / 3, 1]])
b4 = np.array([[1, 3, 4], [1 / 3, 1, 1], [1 / 4, 1, 1]])
b5 = np.array([[1, 4, 1 / 2], [1 / 4, 1, 1 / 4], [2, 4, 1]])
b = [b1, b2, b3, b4, b5]
a = AHP(criteria, b).run()