-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcar.py
317 lines (268 loc) · 11.5 KB
/
car.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import math
import pygame
import os
import numpy as np
from players.player import Player
from players.aggresive_player import AggresivePlayer
from players.sticky_player import StickyPlayer
from players.deep_traffic_player import DeepTrafficPlayer
from config import VISION_B, VISION_F, VISION_W, \
VISUALENABLED, EMERGENCY_BRAKE_MAX_SPEED_DIFF, ROAD_VIEW_OFFSET, \
VISUAL_VISION_B, VISUAL_VISION_F, VISUAL_VISION_W
MAX_SPEED = 110 # km/h
DEFAULT_CAR_POS = 700
IMAGE_PATH = './images'
if VISUALENABLED:
red_car = pygame.image.load(os.path.join(IMAGE_PATH, 'red_car.png'))
red_car = pygame.transform.scale(red_car, (34, 70))
white_car = pygame.image.load(os.path.join(IMAGE_PATH, 'white_car.png'))
white_car = pygame.transform.scale(white_car, (34, 70))
direction_weight = {
'L': 0.01,
'M': 0.98,
'R': 0.01,
}
move_weight = {
'A': 0.30,
'M': 0.50,
'D': 0.20
}
class Car():
def __init__(self, surface, lane_map, speed=0, y=0, lane=4, is_subject=False, subject=None, score=None, agent=None):
self.surface = surface
self.lane_map = lane_map
self.sprite = None if not VISUALENABLED else red_car if is_subject else white_car
self.speed = min(max(speed, 0), MAX_SPEED)
self.y = y
self.lane = lane
self.x = (self.lane - 1) * 50 + 15 + 8 + ROAD_VIEW_OFFSET
self.is_subject = is_subject
self.subject = subject
self.max_speed = -1
self.removed = False
self.emergency_brake = None
self.switching_lane = -1
self.available_directions = ['M']
self.available_moves = ['D']
self.score = score
self.player = np.random.choice([
Player(self),
AggresivePlayer(self),
StickyPlayer(self)
]) if not self.is_subject else DeepTrafficPlayer(self, agent=agent)
self.hard_brake_count = 0
self.alternate_line_switching = 0
def identify(self):
min_box = int(math.floor(self.y / 10.0)) - 1
max_box = int(math.ceil(self.y / 10.0))
# Out of bound
if self.y < -200 or self.y > 1200:
self.removed = True
return False
if 0 <= min_box < 100:
self.lane_map[min_box][self.lane - 1] = self
if 1 <= self.switching_lane <= 7:
self.lane_map[min_box][self.switching_lane - 1] = self
for i in range(-1, 9):
if 0 <= max_box + i < 100:
self.lane_map[max_box + i][self.lane - 1] = self
if 1 <= self.switching_lane <= 7:
self.lane_map[max_box + i][self.switching_lane - 1] = self
return True
def accelerate(self):
# If in front has car then cannot accelerate but follow
self.speed += 1.0 if self.speed < MAX_SPEED else 0.0
def decelerate(self):
if self.max_speed > -1:
self.speed = self.max_speed
else:
self.speed -= 1.0 if self.speed > 0 else 0.0
def check_switch_lane(self):
if self.switching_lane == -1:
return
self.x += (self.switching_lane - self.lane) * 50
if self.x == ROAD_VIEW_OFFSET + (self.switching_lane - 1) * 50 + 15 + 8:
self.lane = self.switching_lane
self.switching_lane = -1
def move(self, action):
moves = self.available_moves
if action not in moves:
action = moves[0]
if self.subject is None:
self.score.action_mismatch_penalty()
if action == 'A':
self.accelerate()
elif action == 'D':
self.decelerate()
return action
def switch_lane(self, direction):
directions = self.available_directions
if direction == 'R':
if 'R' in directions:
if self.lane < 7:
self.switching_lane = self.lane + 1
self.identify()
else:
if self.subject is None:
self.score.action_mismatch_penalty()
return 'M'
if direction == 'L':
if 'L' in directions:
if self.lane > 1:
self.switching_lane = self.lane - 1
self.identify()
else:
if self.subject is None:
self.score.action_mismatch_penalty()
return 'M'
return direction
def identify_available_moves(self):
self.max_speed = -1
moves = ['M', 'A', 'D']
directions = ['M', 'L', 'R']
if self.switching_lane >= 0:
directions = ['M']
if self.lane == 1 and 'L' in directions:
directions.remove('L')
if self.lane == 7 and 'R' in directions:
directions.remove('R')
max_box = int(math.ceil(self.y / 10.0)) - 1
# Front checking
for i in range(-1, 7):
if 0 <= max_box + i < 100:
if self.lane_map[max_box + i][self.lane - 1] != 0 and self.lane_map[max_box + i][self.lane - 1] != self:
car_in_front = self.lane_map[max_box + i][self.lane - 1]
if 'A' in moves:
moves.remove('A')
if car_in_front.speed < self.speed:
if 'M' in moves:
moves.remove('M')
self.emergency_brake = self.speed - car_in_front.speed
self.max_speed = car_in_front.speed
break
# Consider car in target switching lane
for i in range(-1, 7):
if 0 <= max_box + i < 100:
if self.switching_lane > 0:
if self.lane_map[max_box + i][self.switching_lane - 1] != 0 and self.lane_map[max_box + i][
self.switching_lane - 1] != self:
if 'A' in moves:
moves.remove('A')
car_in_front = self.lane_map[max_box + i][self.switching_lane - 1]
if car_in_front.speed < self.speed:
if 'M' in moves:
moves.remove('M')
# emergency_brake = self.speed - car_in_front.speed
self.max_speed = car_in_front.speed \
if self.max_speed == -1 or self.max_speed > car_in_front.speed else self.max_speed
# Left lane checking
if 'L' in directions:
for i in range(0, 9):
if 0 <= max_box + i < 100:
if self.lane_map[max_box + i][self.lane - 2] != 0:
directions.remove('L')
break
# Right lane checking
if 'R' in directions:
for i in range(0, 9):
if 0 <= max_box + i < 100:
if self.lane_map[max_box + i][self.lane] != 0:
directions.remove('R')
break
self.available_moves = moves
self.available_directions = directions
return moves, directions
def random(self):
moves, directions = self.identify_available_moves()
ds = np.random.choice(direction_weight.keys(), 3, p=direction_weight.values())
ms = np.random.choice(move_weight.keys(), 3, p=move_weight.values())
for d in ds:
if d in directions:
self.switch_lane(d)
break
for m in ms:
if m in moves:
self.move(m)
break
def relative_pos_subject(self):
if self.is_subject:
if self.emergency_brake is not None and self.emergency_brake > EMERGENCY_BRAKE_MAX_SPEED_DIFF:
self.score.brake_penalty()
self.hard_brake_count += 1
self.emergency_brake = None
return
dvdt = self.speed - self.subject.speed
dmds = dvdt / 3.6
dbdm = 1.0 / 0.25
dsdf = 1.0 / 50.0
dmdf = dmds * dsdf
dbdf = dbdm * dmdf * 10.0
self.y = self.y - dbdf
if DEFAULT_CAR_POS - dbdf <= self.y < DEFAULT_CAR_POS:
self.score.subtract()
elif DEFAULT_CAR_POS - dbdf > self.y >= DEFAULT_CAR_POS:
self.score.add()
self.score.penalty()
def decide(self, end_episode, cache=False, is_training=True):
if self.subject is None:
q_values, result = self.player.decide_with_vision(self.get_vision(),
self.score.score,
end_episode,
cache=cache,
is_training=is_training)
# Check for recent lane switching
if result == 'L' or result == 'R':
if (result == 'L' and 4 in self.player.agent.previous_actions) or \
(result == 'R' and 3 in self.player.agent.previous_actions):
self.score.switching_lane_penalty()
self.alternate_line_switching += 1
return q_values, result
else:
return self.player.decide(end_episode, cache=cache)
def draw(self):
self.relative_pos_subject()
self.check_switch_lane()
if VISUALENABLED:
self.surface.blit(self.sprite, (self.x, self.y, 34, 70))
def get_vision(self):
min_x = min(max(0, self.lane - 1 - VISION_W), 6)
max_x = min(max(0, self.lane - 1 + VISION_W), 6)
input_min_xx = self.lane - 1 - VISION_W
input_max_xx = self.lane - 1 + VISION_W
input_min_y = int(math.floor(self.y / 10.0)) - VISION_F
input_max_y = int(math.floor(self.y / 10.0)) + VISION_B
min_y = min(max(0, input_min_y), 100)
max_y = min(max(0, input_max_y), 100)
cars_in_vision = set([
(self.lane_map[y][x].lane - 1, int(math.floor(self.lane_map[y][x].y / 10.0)))
for y in range(min_y, max_y + 1)
for x in range(min_x, max_x + 1)
if self.lane_map[y][x] != 0])
vision = np.zeros((100, 7), dtype=np.int)
for car in cars_in_vision:
for y in range(7):
vision[car[1] + y][car[0]] = 1
# Crop vision from lane_map
vision = vision[min_y: max_y + 1, min_x: max_x + 1]
# Add padding if required
vision = np.pad(vision,
((min_y - input_min_y, input_max_y - max_y), (min_x - input_min_xx, input_max_xx - max_x)),
'constant',
constant_values=(-1))
vision = np.reshape(vision, [VISION_F + VISION_B + 1, VISION_W * 2 + 1, 1])
return vision
def get_subjective_vision(self):
min_x = min(max(0, self.lane - 1 - VISUAL_VISION_W), 6)
max_x = min(max(0, self.lane - 1 + VISUAL_VISION_W), 6)
input_min_xx = self.lane - 1 - VISUAL_VISION_W
input_max_xx = self.lane - 1 + VISUAL_VISION_W
input_min_y = int(math.floor(self.y / 10.0)) - VISUAL_VISION_F
input_max_y = int(math.floor(self.y / 10.0)) + VISUAL_VISION_B
min_y = min(max(0, input_min_y), 100)
max_y = min(max(0, input_max_y), 100)
cars = [
(self.lane_map[y][x].lane, int(math.floor(self.lane_map[y][x].y / 10.0)))
for y in range(min_y, max_y + 1)
for x in range(min_x, max_x + 1)
if self.lane_map[y][x] != 0 and self.lane_map[y][x].subject is not None]
return cars