-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCM20210904_SICP_2.3.2_Example_SymbolicDifferentiation.jl
580 lines (470 loc) · 15.5 KB
/
PCM20210904_SICP_2.3.2_Example_SymbolicDifferentiation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
### A Pluto.jl notebook ###
# v0.19.11
using Markdown
using InteractiveUtils
# ╔═╡ 845f4e62-0d86-11ec-27a5-cb54b6b3e50e
md"
======================================================================================
#### [SICP\_2.3.2\_Example\_SymbolicDifferentiation.jl](https://sarabander.github.io/sicp/html/2_002e3.xhtml#g_t2_002e3_002e2)
###### file: PCM20210904\_SICP\_2.3.2\_Example\_SymbolicDifferentiation
###### Julia/Pluto-code (1.8.1/19.11): PCM *** 2022/09/12 ***
======================================================================================
"
# ╔═╡ a1015f94-2bc3-435e-b97c-dfb213b003e9
md"
##### structure $$Cons$$, constructors $$cons, list$$, selectors $$car, cdr$$
"
# ╔═╡ 644bcfa4-700a-43df-9ba1-3b240f5d1344
struct Cons
car
cdr
end
# ╔═╡ 8b8e28c7-6d81-4c8c-9dee-5b2be510871b
car(cell::Cons) = cell.car
# ╔═╡ edba599c-194b-45ac-a8cd-b3f7ba06f9ab
car(x::Vector) = x[1]
# ╔═╡ f5627209-b239-4480-8f30-b8093ac7f240
cdr(cell::Cons)::Any = cell.cdr
# ╔═╡ eda10202-c5e3-4654-9c20-6be355dcb630
cdr(x::Vector) = x[2:end]
# ╔═╡ fb1c5d22-54f6-490d-9af0-33ea8e0038b9
function list(xs...)
push!([], xs...)
end
# ╔═╡ e3df9cf1-69ca-462a-90a9-1ac444f45026
md"
---
##### Representing algebraic expressions
"
# ╔═╡ 3369f0d7-7b81-4a83-95a0-f7cb9f9cb2d1
isvariable(x) = typeof(x) == Symbol
# ╔═╡ c72e1835-30b4-4c70-b0d6-9053fc51219d
isvariable(:a)
# ╔═╡ c3afc2a8-6a9f-407d-a6e6-31f809dc313b
isvariable(4.0)
# ╔═╡ 59457e51-0282-44e1-9b11-e8357a3a088a
isnumber(x) = typeof(x) <: Real
# ╔═╡ a6d3b688-bf1c-45e4-98ad-0515e13eb1b6
isnumber(4)
# ╔═╡ 22d58fcc-ccc9-4d71-89f9-58b4c1e7533b
isnumber(4.0)
# ╔═╡ 93e69708-0ac0-4070-b41a-4fcf7f876b22
isnumber(:x)
# ╔═╡ 343378d9-4bf4-4aeb-a689-491ae9273cfa
function is_same_variable(v1, v2)
isvariable(v1) && isvariable(v2) && v1 == v2
end
# ╔═╡ c844eca6-2ad2-4773-a90b-838cf57e8edd
is_same_variable(:x, :x)
# ╔═╡ 3601d9e4-8f21-4248-b1ba-46dbaad91034
is_same_variable(:x, :y)
# ╔═╡ a681f393-6956-43e4-a58b-f2e75a0cdf8d
make_sum1(a1, a2) = list(:+, a1, a2)
# ╔═╡ 2bebf3d3-f6ca-4883-9b64-42e54843805f
make_product1(a1, a2) = list(:*, a1, a2)
# ╔═╡ da37b342-c51c-47a5-aeb1-abeac8e9ef6e
make_sum1(5, 6)
# ╔═╡ a4f0c949-2140-4405-b37e-b9a96136431d
make_product1(5, 6)
# ╔═╡ cad3435d-df93-4d04-a486-6ed4f7e63037
function ispair(x)
((typeof(x) == Vector{Symbol} ||
typeof(x) == Vector{Any}) && length(x) ≥ 2 ) ||
typeof(x) == Cons
end # function ispair
# ╔═╡ bbf6a9b3-1645-4d1a-bcc8-e967018f106e
Cons(1,2)
# ╔═╡ 897a59b1-ef96-44cf-b8fc-8e805ecf23f2
ispair(Cons(1,2))
# ╔═╡ b86a08c4-5a51-4b69-bec3-20cc524e32a5
ispair([])
# ╔═╡ 6e25b818-6ef5-4719-b805-e8a9ee29d427
ispair([:a])
# ╔═╡ 6cb2e77b-e4a8-4a39-8a36-25bb18640fac
l1 = list(:a, :b)
# ╔═╡ c6cb3883-c36f-4cd3-aace-ab3f0607288b
typeof(l1) == Vector{Any}
# ╔═╡ 5c98be42-20f5-49af-9200-35885d51ec02
ispair(l1)
# ╔═╡ 4f73fd43-bc88-4117-b911-93225fb26260
function issum(x)
ispair(x) && (car(x) == :+)
end
# ╔═╡ f4ada911-f4a7-486d-a3c6-358c2d7cdc95
issum([:+, 2, 3.0])
# ╔═╡ 30490b94-283f-4570-8672-a21228c7407d
make_sum1(5, 6)
# ╔═╡ 6b6ea385-b1fc-46e2-8870-6a354df3b8fb
issum(make_sum1(5, 6))
# ╔═╡ eafe6473-20f7-4c1a-a4da-471122116589
issum(make_product1(5, 6))
# ╔═╡ da705fc0-4d7b-44d9-b622-806d1435e599
function addend(s)
#--------------------------
cadr(s) = car(cdr(s))
#--------------------------
cadr(s)
end
# ╔═╡ 8f93dd95-39a2-4386-826a-882e5e54aaa7
addend(make_sum1(5, 6))
# ╔═╡ 429a0d1e-f062-4c42-a02c-712ca40fb02b
function augend(s)
#--------------------------
caddr(s) = car(cdr(cdr(s)))
#--------------------------
caddr(s)
end
# ╔═╡ ad4a7cbb-2eeb-4d97-9c3e-a7b6474cf69b
augend(make_sum1(5, 6))
# ╔═╡ 9cfba2ff-1644-4c09-8bb5-3b68aa0acd20
function isproduct(x)
ispair(x) && (car(x) == :*)
end
# ╔═╡ ba1ab835-99bc-4e4f-98a8-98584ca31800
isproduct(make_product1(5, 6))
# ╔═╡ ccd85055-d249-48db-b54c-ad3ccdc40086
function multiplier(p)
#--------------------------
cadr(s) = car(cdr(s))
#--------------------------
cadr(p)
end
# ╔═╡ ad8288d1-87b5-4854-a4c3-ed0085a929c5
multiplier(make_product1(5, 6))
# ╔═╡ 8539426f-6af7-4285-a84b-14e929ced529
function multiplicand(p)
#--------------------------
caddr(s) = car(cdr(cdr(s)))
#--------------------------
caddr(p)
end
# ╔═╡ 0f497ebf-8060-4e39-acbb-48c19354e81b
multiplicand(make_product1(5, 6))
# ╔═╡ c240ed6d-55eb-42cf-aa6f-090b2dbfd1f0
md"
---
##### The differentiation program with abstract data
"
# ╔═╡ 68922108-5e0e-4698-b6eb-0a16543c4fb1
function deriv1(exp, var)
if isnumber(exp)
0
elseif isvariable(exp)
is_same_variable(exp, var) ? 1 : 0
elseif issum(exp)
make_sum1(deriv1(addend(exp), var), deriv1(augend(exp), var))
elseif isproduct(exp)
make_sum1(make_product1(multiplier(exp), deriv1(multiplicand(exp), var)),
make_product1(deriv1(multiplier(exp), var), multiplicand(exp)))
else "unknown expression type"
end
end
# ╔═╡ 771cf918-3b39-4c40-9251-e2ca8cee9fdf
md"
---
##### Applications
"
# ╔═╡ ffe27413-d324-422e-a85c-99dd07875873
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(3) = 0$$
"
# ╔═╡ 8a9cb1cb-cc15-4957-869a-550cc45c6a76
deriv1(3, :x)
# ╔═╡ dfafda3a-b6ea-4f86-ab41-fed695b07701
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(x) = 1$$
"
# ╔═╡ d85c8936-f52a-4d17-b850-493b72081c75
deriv1(:x, :x)
# ╔═╡ ac7a8269-71f2-4c60-b2f1-7303df3d9903
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(y) = 0$$
"
# ╔═╡ 5b86fd00-1918-428b-83db-02bc01c77096
deriv1(:y, :x)
# ╔═╡ 78e30793-0f6e-476a-8253-0673f9c0f9a3
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(3+x) = 0+1$$
"
# ╔═╡ 3abfd313-abf2-46be-b3e7-c8084ae56b26
deriv1(list(:+, 3, :x), :x)
# ╔═╡ 908f4d63-65f3-4baa-b0f5-14066e759c68
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(x+3) = 1+0$$
"
# ╔═╡ 3a823fa2-8c63-4c62-b8a8-5e909a0495dd
deriv1(list(:+, :x, 3), :x)
# ╔═╡ 89e2bec3-a601-48d1-bd39-25621cd1b5c7
md"
---
$$\frac{\mathrm{d}(x*y)}{\mathrm{d}x} = (x*0)+(1*y)$$
"
# ╔═╡ f06ccd1d-443e-4ebe-8bc0-520b3403be62
deriv1(list(:*, :x, :y), :x)
# ╔═╡ bf11d1eb-7cbc-4390-afe0-40848505390c
deriv1([:*, :x, :y], :x)
# ╔═╡ 89f93941-aa5a-4048-9853-babdb09fe3a2
ispair([:*, :x, :y])
# ╔═╡ d0991e11-85eb-46af-89a2-d2664b85eeeb
list(:*, [:*, :x, :y], [:+, :x, 3])
# ╔═╡ 67a60f41-ca28-4ff2-bfdf-5ff04c279a65
list(:*, list(:*, :x, :y), list(:+, :x, 3))
# ╔═╡ 46aed6fe-43db-4895-8723-514878c90399
typeof(list(:*, [:*, :x, :y], [:+, :x, 3]))
# ╔═╡ d70e7c9a-0c5b-4661-bc67-2cd7e88580b7
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}((x*y)*(x+3)) = \frac{\mathrm{d}}{\mathrm{d}x}(x^2y+3xy) = 2xy + 3y$$
"
# ╔═╡ f1a89f14-b420-4024-bd08-7bcc4a6b8e54
deriv1(list(:*, [:*, :x, :y], [:+, :x, 3]), :x)
# ╔═╡ b4e2eee7-da7e-4b19-bb4a-5cc30712acef
deriv1(list(:*, list(:*, :x, :y), list(:+, :x, 3)), :x)
# ╔═╡ 7811f0ee-18f1-4a7c-8f32-84207f53f8c1
md"
##### Reductions
"
# ╔═╡ a13774e5-d336-4064-911d-89afd2dba785
iszero(0.0)
# ╔═╡ 96169b60-f329-459d-93d5-7d88b84ed584
function is_equal_number(exp, num)
if exp == num
true
else false
end
end
# ╔═╡ b849965e-1a8f-4cdb-95ba-aae2fa1cb17c
is_equal_number(0, 0.0)
# ╔═╡ e8164515-4e43-4ffb-8747-1e99e36fe768
is_equal_number(2, 2.0)
# ╔═╡ a54f48d7-9eb0-454a-8d45-5f6ddc00bc59
is_equal_number(2, 3.0)
# ╔═╡ 14f579c1-c76a-4d33-8dc0-0ebb36626ccf
function make_sum2(a1, a2)
if is_equal_number(a1, 0.0)
a2
elseif is_equal_number(a2, 0.0)
a1
elseif isnumber(a1) && isnumber(a2)
a1 + a2
else list(:+, a1, a2)
end
end
# ╔═╡ 10914935-3607-4e94-9051-a14ba0eaf4cb
make_sum1(5, 6)
# ╔═╡ ce0d69d9-8ef8-4fb1-89c7-6c8919fdcbcd
make_sum2(5, 6)
# ╔═╡ 4fa0d90a-9d11-4e82-bdf9-03a152f689e3
function make_product2(m1, m2)
if is_equal_number(m1, 0.0) || is_equal_number(m2, 0.0)
0.0
elseif is_equal_number(m1, 1.0)
m2
elseif is_equal_number(m2, 1.0)
m1
elseif isnumber(m1) && isnumber(m2)
m1 * m2
else list(:*, m1, m2)
end
end
# ╔═╡ ae3aaeb5-4b5d-4d51-98e2-859e794f9581
make_product1(5, 6)
# ╔═╡ 6c54a837-9f55-4ed2-b45f-6edd58ab780e
make_product2(5, 6)
# ╔═╡ 37aa19fb-0ef4-4cdb-8514-5d9aeed5392a
function deriv2(exp, var)
if isnumber(exp)
0
elseif isvariable(exp)
is_same_variable(exp, var) ? 1 : 0
elseif issum(exp)
make_sum2(deriv2(addend(exp), var), deriv2(augend(exp), var))
elseif isproduct(exp)
make_sum2(make_product2(multiplier(exp), deriv2(multiplicand(exp), var)),
make_product2(deriv2(multiplier(exp), var), multiplicand(exp)))
else "unknown expression type"
end
end
# ╔═╡ 7413756e-7918-49f8-9f1a-a9e3e9ab34ba
md"
---
##### Applications with reductions
"
# ╔═╡ 77a7116b-c42e-41eb-adbc-00bb1485fe29
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(3) = 0$$
"
# ╔═╡ 3ca02591-5b87-423c-8eea-a32b3d90d1a8
deriv2(3, :x)
# ╔═╡ 5eaefcd0-9b6d-4601-a8ef-e59bb32afcb1
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(y) = 0$$
"
# ╔═╡ 708e1ba2-9c0e-475e-9e28-dbf45de18f06
deriv2(:y, :x)
# ╔═╡ cfaf861c-25ff-40c9-841c-90bf209d7eb5
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(x) = 1$$
"
# ╔═╡ e5b19433-dc9e-4695-9ccf-761dd40ddcb7
deriv2(:x, :x)
# ╔═╡ 9805dea6-6785-4b90-92a4-deb1616f23fe
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}(x+3) = 1+0 = 1$$
"
# ╔═╡ 88e589b9-ee19-465d-8f88-8a1a9afd0cde
deriv2(list(:+, :x, 3), :x)
# ╔═╡ c05f064d-2148-44f7-9cce-d64c464dd1f6
md"
---
$$\frac{\mathrm{d}(x*y)}{\mathrm{d}x} = (x*0)+(1*y) = y$$
"
# ╔═╡ e0a7892b-f865-4588-88c0-d089638726ec
deriv2(list(:*, :x, :y), :x)
# ╔═╡ 2dac06cb-afd6-4393-abfc-8d5c2602ee34
md"
---
$$\frac{\mathrm{d}}{\mathrm{d}x}((x*y)*(x+3)) = \frac{\mathrm{d}}{\mathrm{d}x}(x^2y+3xy) = 2xy + 3y$$
"
# ╔═╡ b9122f28-834d-445c-8e77-dd5eb15f9f3c
deriv2([:*, [:*, :x, :y], [:+, :x, 3]], :x)
# ╔═╡ 105045e0-8cd9-410b-bc36-e7dbf1493bff
deriv2(list(:*, [:*, :x, :y], [:+, :x, 3]), :x)
# ╔═╡ 28047c93-08ce-498c-ab8a-a2de99db9c7a
deriv2(list(:*, list(:*, :x, :y), list(:+, :x, 3)), :x)
# ╔═╡ fb63509a-2c06-44f7-b495-956f65a28c07
md"
---
##### References
- **Abelson, H., Sussman, G.J. & Sussman, J.**; Structure and Interpretation of Computer Programs, Cambridge, Mass.: MIT Press, (2/e), 1996, [https://sarabander.github.io/sicp/](https://sarabander.github.io/sicp/), last visit 2022/09/12
"
# ╔═╡ 0eac18d0-5890-48a2-b9c7-7ac5dd212fe9
md"
---
###### end of ch. 2.3.2
This is a **draft** under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Comments, suggestions for improvement and bug reports are welcome: **claus.moebus(@)uol.de**
---
"
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.8.1"
manifest_format = "2.0"
project_hash = "da39a3ee5e6b4b0d3255bfef95601890afd80709"
[deps]
"""
# ╔═╡ Cell order:
# ╟─845f4e62-0d86-11ec-27a5-cb54b6b3e50e
# ╟─a1015f94-2bc3-435e-b97c-dfb213b003e9
# ╠═644bcfa4-700a-43df-9ba1-3b240f5d1344
# ╠═8b8e28c7-6d81-4c8c-9dee-5b2be510871b
# ╠═edba599c-194b-45ac-a8cd-b3f7ba06f9ab
# ╠═f5627209-b239-4480-8f30-b8093ac7f240
# ╠═eda10202-c5e3-4654-9c20-6be355dcb630
# ╠═fb1c5d22-54f6-490d-9af0-33ea8e0038b9
# ╟─e3df9cf1-69ca-462a-90a9-1ac444f45026
# ╠═3369f0d7-7b81-4a83-95a0-f7cb9f9cb2d1
# ╠═c72e1835-30b4-4c70-b0d6-9053fc51219d
# ╠═c3afc2a8-6a9f-407d-a6e6-31f809dc313b
# ╠═59457e51-0282-44e1-9b11-e8357a3a088a
# ╠═a6d3b688-bf1c-45e4-98ad-0515e13eb1b6
# ╠═22d58fcc-ccc9-4d71-89f9-58b4c1e7533b
# ╠═93e69708-0ac0-4070-b41a-4fcf7f876b22
# ╠═343378d9-4bf4-4aeb-a689-491ae9273cfa
# ╠═c844eca6-2ad2-4773-a90b-838cf57e8edd
# ╠═3601d9e4-8f21-4248-b1ba-46dbaad91034
# ╠═a681f393-6956-43e4-a58b-f2e75a0cdf8d
# ╠═2bebf3d3-f6ca-4883-9b64-42e54843805f
# ╠═da37b342-c51c-47a5-aeb1-abeac8e9ef6e
# ╠═a4f0c949-2140-4405-b37e-b9a96136431d
# ╠═cad3435d-df93-4d04-a486-6ed4f7e63037
# ╠═bbf6a9b3-1645-4d1a-bcc8-e967018f106e
# ╠═897a59b1-ef96-44cf-b8fc-8e805ecf23f2
# ╠═b86a08c4-5a51-4b69-bec3-20cc524e32a5
# ╠═6e25b818-6ef5-4719-b805-e8a9ee29d427
# ╠═6cb2e77b-e4a8-4a39-8a36-25bb18640fac
# ╠═c6cb3883-c36f-4cd3-aace-ab3f0607288b
# ╠═5c98be42-20f5-49af-9200-35885d51ec02
# ╠═4f73fd43-bc88-4117-b911-93225fb26260
# ╠═f4ada911-f4a7-486d-a3c6-358c2d7cdc95
# ╠═30490b94-283f-4570-8672-a21228c7407d
# ╠═6b6ea385-b1fc-46e2-8870-6a354df3b8fb
# ╠═eafe6473-20f7-4c1a-a4da-471122116589
# ╠═da705fc0-4d7b-44d9-b622-806d1435e599
# ╠═8f93dd95-39a2-4386-826a-882e5e54aaa7
# ╠═429a0d1e-f062-4c42-a02c-712ca40fb02b
# ╠═ad4a7cbb-2eeb-4d97-9c3e-a7b6474cf69b
# ╠═9cfba2ff-1644-4c09-8bb5-3b68aa0acd20
# ╠═ba1ab835-99bc-4e4f-98a8-98584ca31800
# ╠═ccd85055-d249-48db-b54c-ad3ccdc40086
# ╠═ad8288d1-87b5-4854-a4c3-ed0085a929c5
# ╠═8539426f-6af7-4285-a84b-14e929ced529
# ╠═0f497ebf-8060-4e39-acbb-48c19354e81b
# ╟─c240ed6d-55eb-42cf-aa6f-090b2dbfd1f0
# ╠═68922108-5e0e-4698-b6eb-0a16543c4fb1
# ╟─771cf918-3b39-4c40-9251-e2ca8cee9fdf
# ╟─ffe27413-d324-422e-a85c-99dd07875873
# ╠═8a9cb1cb-cc15-4957-869a-550cc45c6a76
# ╟─dfafda3a-b6ea-4f86-ab41-fed695b07701
# ╠═d85c8936-f52a-4d17-b850-493b72081c75
# ╟─ac7a8269-71f2-4c60-b2f1-7303df3d9903
# ╠═5b86fd00-1918-428b-83db-02bc01c77096
# ╟─78e30793-0f6e-476a-8253-0673f9c0f9a3
# ╠═3abfd313-abf2-46be-b3e7-c8084ae56b26
# ╟─908f4d63-65f3-4baa-b0f5-14066e759c68
# ╠═3a823fa2-8c63-4c62-b8a8-5e909a0495dd
# ╟─89e2bec3-a601-48d1-bd39-25621cd1b5c7
# ╠═f06ccd1d-443e-4ebe-8bc0-520b3403be62
# ╠═bf11d1eb-7cbc-4390-afe0-40848505390c
# ╠═89f93941-aa5a-4048-9853-babdb09fe3a2
# ╠═d0991e11-85eb-46af-89a2-d2664b85eeeb
# ╠═67a60f41-ca28-4ff2-bfdf-5ff04c279a65
# ╠═46aed6fe-43db-4895-8723-514878c90399
# ╟─d70e7c9a-0c5b-4661-bc67-2cd7e88580b7
# ╠═f1a89f14-b420-4024-bd08-7bcc4a6b8e54
# ╠═b4e2eee7-da7e-4b19-bb4a-5cc30712acef
# ╟─7811f0ee-18f1-4a7c-8f32-84207f53f8c1
# ╠═a13774e5-d336-4064-911d-89afd2dba785
# ╠═96169b60-f329-459d-93d5-7d88b84ed584
# ╠═b849965e-1a8f-4cdb-95ba-aae2fa1cb17c
# ╠═e8164515-4e43-4ffb-8747-1e99e36fe768
# ╠═a54f48d7-9eb0-454a-8d45-5f6ddc00bc59
# ╠═14f579c1-c76a-4d33-8dc0-0ebb36626ccf
# ╠═10914935-3607-4e94-9051-a14ba0eaf4cb
# ╠═ce0d69d9-8ef8-4fb1-89c7-6c8919fdcbcd
# ╠═4fa0d90a-9d11-4e82-bdf9-03a152f689e3
# ╠═ae3aaeb5-4b5d-4d51-98e2-859e794f9581
# ╠═6c54a837-9f55-4ed2-b45f-6edd58ab780e
# ╠═37aa19fb-0ef4-4cdb-8514-5d9aeed5392a
# ╟─7413756e-7918-49f8-9f1a-a9e3e9ab34ba
# ╟─77a7116b-c42e-41eb-adbc-00bb1485fe29
# ╠═3ca02591-5b87-423c-8eea-a32b3d90d1a8
# ╟─5eaefcd0-9b6d-4601-a8ef-e59bb32afcb1
# ╠═708e1ba2-9c0e-475e-9e28-dbf45de18f06
# ╟─cfaf861c-25ff-40c9-841c-90bf209d7eb5
# ╠═e5b19433-dc9e-4695-9ccf-761dd40ddcb7
# ╟─9805dea6-6785-4b90-92a4-deb1616f23fe
# ╠═88e589b9-ee19-465d-8f88-8a1a9afd0cde
# ╟─c05f064d-2148-44f7-9cce-d64c464dd1f6
# ╠═e0a7892b-f865-4588-88c0-d089638726ec
# ╟─2dac06cb-afd6-4393-abfc-8d5c2602ee34
# ╠═b9122f28-834d-445c-8e77-dd5eb15f9f3c
# ╠═105045e0-8cd9-410b-bc36-e7dbf1493bff
# ╠═28047c93-08ce-498c-ab8a-a2de99db9c7a
# ╟─fb63509a-2c06-44f7-b495-956f65a28c07
# ╟─0eac18d0-5890-48a2-b9c7-7ac5dd212fe9
# ╟─00000000-0000-0000-0000-000000000001
# ╟─00000000-0000-0000-0000-000000000002