-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPCM20221128_SICP_2.5.1_GenericArithmeticOperations.jl
1076 lines (924 loc) · 36.8 KB
/
PCM20221128_SICP_2.5.1_GenericArithmeticOperations.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
### A Pluto.jl notebook ###
# v0.19.12
using Markdown
using InteractiveUtils
# ╔═╡ 3a789ed0-6f25-11ed-3bcc-9d85e82fddbd
md"
====================================================================================
##### SICP: 2.5.1 [Generic Arithmetic Operations](https://sarabander.github.io/sicp/html/2_002e5.xhtml#g_t2_002e5_002e1)
###### file: PCM20221128\_SICP\_2.5.1\_GenericArithmeticOperations.jl
###### Julia/Pluto.jl-code (1.8.2/0.19.14) by PCM *** 2022/12/12 ***
====================================================================================
"
# ╔═╡ b352cb37-d623-40e4-aa96-93bf93c8a36a
md"
#### 2.5.1.1 *Ground*-level *SICP-Scheme*-like functions and operators
"
# ╔═╡ b14e59e2-7b83-4c62-ae1a-3b65eeeda575
struct Cons
car
cdr
end
# ╔═╡ 341a48b4-5614-46c6-916d-4c0593d54659
cons(car::Any, cdr::Any)::Cons = Cons(car, cdr)::Cons
# ╔═╡ 46562440-ef41-48d5-9e4b-bba582da7c4c
car(cell::Cons) = cell.car
# ╔═╡ 1a9a7132-626a-4b15-b382-62576c71a5c6
cdr(cell::Cons)::Any = cell.cdr
# ╔═╡ c65da2ce-3803-4e48-8585-7763445417dd
md"
---
##### Representation *in*dependent interface functions
"
# ╔═╡ 074de4c6-ba2f-4df9-b468-0c3c513c46c4
function attachTag(typeTag, contents)
cons(typeTag, contents)
end # attachTag
# ╔═╡ 698d288d-c9ff-450f-ad58-28a7ab47a9f8
function typeTag(datum)
car(datum)
end # typeTag
# ╔═╡ adfdcc85-da65-4623-9d6a-2133b7ab871d
function contents(datum)
cdr(datum)
end # function contents
# ╔═╡ af74f59d-26db-428e-8e9b-d6605e5f427b
md"
---
##### *Procedures* for the manipulation of the *operation$$\times$$type* tables
"
# ╔═╡ f6daf9a8-e367-4ee9-8eb1-cfb13b8ac81f
md"
###### Table *constructors*
"
# ╔═╡ 95b595b9-7a35-47ff-b6d2-d3c4331d90b8
Dict{Tuple, Function} # types of dictionary
# ╔═╡ 1528b18b-0469-469e-b467-71bd3571a096
# construction of empty table as a dictionary
myTableOfOpsAndTypes = Dict()
# ╔═╡ fe78d635-b2b9-4e2e-8e3f-61a4eb78f1fc
myTableOfOpsAndTypes
# ╔═╡ 0a6f350d-0a00-4087-b226-0409729a9e65
typeof(myTableOfOpsAndTypes)
# ╔═╡ 5235492c-e307-45b1-8256-8a8b4c748f3c
function myPut!(op::Symbol, opTypes::Tuple, lambdaExpression::Function)
# Dict((op::Symbol, opType::Symbol) <= lambdaExpression::Function)
myTableOfOpsAndTypes[op::Symbol, opTypes::Tuple] = lambdaExpression
end # function put
# ╔═╡ 124192da-7076-43fc-962a-d0c10883cdbd
md"
---
###### Table *selectors*
"
# ╔═╡ dd346a4c-8399-439d-8677-977dbce90b8f
get # SICP's get cannot be used here, because it's already in use in other contexts
# ╔═╡ 61676c9a-b533-409c-afb4-9caed5d33238
function myGet(op::Symbol, opType::Tuple) # instead of SICP's get
# Dict((op::Symbol, opType::Symbol) => item::Function)
myTableOfOpsAndTypes[op::Symbol, opType::Tuple]
end # function myGet
# ╔═╡ 71aee367-6d51-41ff-9d65-9cf0e313e81d
function getOpsOfType(table, argType)
filter(pairOpOpType ->
let
(op, opType) = pairOpOpType
opType == argType ? true : false
end, # let
keys(table))
end # function getOpsOfType
# ╔═╡ 8e888d27-0b63-471b-9130-e696b3c6a7e9
md"
$$\begin{array}{|c|}
\hline \\
\text{Domain-specific} \textit{ generic } \text{operations} \\
\hline \\
add \;\;\;\;\;\;\;\;\;\; sub \\
mul \;\;\;\;\;\;\;\;\;\; div \\
numerator \\
denominator \\
\\
\hline \\
\text{Generic} \textit{ arithmetic } \text{package} \\
\begin{array}{c|c|c}
& \hline & \\
\text{Rational} & \text{Complex} & \text{Ordinary} \\
\text{arithmetic} & \text{arithmetic} & \text{arithmetic} \\
\hline \\
addRat \;\; subRat \;\; & addComplex \;\; subComplex \;\; & \;\; + \;\; - \\
mulRat \;\; divRat \;\; & mulComplex \;\; divComplex \;\; & \;\; * \;\; / \\
numerRat & realPart & \\
denomRat & imagPart & \\
& & \\
\hline \\
& \text{Rectangular}\;\;\;\;\;\text{Polar} & \\
& \hline & \\
& addComplexRect \;\; addComplexPolar & \\
& subComplexRect \;\; subComplexPolar & \\
& mulComplexRect \;\; mulComplexPolar & \\
& divComplexRect \;\; divComplexPolar & \\
& realPartRect \;\; realPartPolar & \\
& imagPartRect \;\; imagPartPolar & \\
& & \\
\end{array} \\
\hline
\end{array}$$
**Fig. 2.5.1.1** Generic arithmetic system (cf. SICP, 1996, Fig. 2.23)
---
"
# ╔═╡ 0fa115b4-f02e-4c70-bb13-2c230b807b90
md"
##### Generic *arithmetic* procedures
"
# ╔═╡ 6785099b-8f50-4b65-8dbb-0b514af96bbf
function applyGeneric(opSymbol, xs...) # SICP's '.args' is renamed to slurping 'xs'
let
typeTags = map(typeTag, xs)
proc = myGet(opSymbol, typeTags) # splatting of typeTags
content = map(contents, xs)
proc(content...) # application of proc to splatting of content
end # let
end # function applyGeneric
# ╔═╡ e791fe67-9ebd-4965-bdb8-49823ca2b1f0
myPrint(x) = applyGeneric(:print, x) # generic print function
# ╔═╡ e25fdfac-e91c-4d47-bb43-2eadc90608c1
md"
###### Generic arithmetic *constructors*
"
# ╔═╡ 4565c0ac-7900-406a-9d81-520e1aa9cba0
make(x) = applyGeneric(:make, x) # generic constructor function
# ╔═╡ 0a35072a-f929-4791-9b58-810f0846f70e
md"
###### Generic arithmetic *selectors*
"
# ╔═╡ a576dcd3-5992-4605-8bd4-b366130e687a
begin
numerator(x) = applyGeneric(:numer, x) # generic selector numerator
denominator(x) = applyGeneric(:denom, x) # generic selector denominator
realPart(z) = applyGeneric(:realPart, z) # generic selector realPart
imagPart(z) = applyGeneric(:imagPart, z) # generic selector imagPart
magnitude(z) = applyGeneric(:magnitude, z) # generic selector norm
angle(z) = applyGeneric(:angle, z) # generic selector angle
end
# ╔═╡ 66ad6609-fa02-4c5d-936b-091de42c5bf2
md"
###### Generic arithmetic *operators*
"
# ╔═╡ d47fb6bd-a6b0-4c47-ad68-2a719c086003
begin
add(x, y) = applyGeneric(:add, x, y) # generic addition function
sub(x, y) = applyGeneric(:sub, x, y) # generic subtraction function
mul(x, y) = applyGeneric(:mul, x, y) # generic multiplication function
div(x, y) = applyGeneric(:div, x, y) # generic division function
end # begin
# ╔═╡ 738c8e2e-06de-4fb0-b57a-28bac1755ff4
md"
---
##### *Ordinary* (SICP-*Scheme*-like) number package
"
# ╔═╡ 2a734656-20d2-437b-abe2-5f2437b4addb
function installSICPNumberPackage()
#======================================================================#
# local procedures
tag!(x) = attachTag(:sicpNumber, x)
#----------------------------------------
printSicpNumber(sicpNumber) = sicpNumber
#======================================================================#
# interface to rest of system
myPut!(:print,(:sicpNumber,), printSicpNumber)
#-----------------------------------------------------------------------
myPut!(:make, (:sicpNumber,), x -> tag!(x))
#-----------------------------------------------------------------------
myPut!(:add, (:sicpNumber, :sicpNumber), (x, y) -> tag!(x + y))
myPut!(:sub, (:sicpNumber, :sicpNumber), (x, y) -> tag!(x - y))
myPut!(:mul, (:sicpNumber, :sicpNumber), (x, y) -> tag!(x * y))
myPut!(:div, (:sicpNumber, :sicpNumber), (x, y) -> tag!(x / y))
#-----------------------------------------------------------------------
"package sicpNumber done"
#======================================================================#
end # function installJuliaNumberPackage
# ╔═╡ 6c05818e-bd48-42f4-bb9c-240aee64b8d5
md"
###### Installation of $$installSICPNumberPackage$$
"
# ╔═╡ 1923749d-ae33-4145-b2c1-868dbae2a43e
installSICPNumberPackage()
# ╔═╡ f6db0bdd-82e0-4d2e-8ee0-5f46a47d6779
getOpsOfType(myTableOfOpsAndTypes, (:sicpNumber,))
# ╔═╡ 3966cebe-8aa5-4bf0-8dc2-4ad5c5ba1874
getOpsOfType(myTableOfOpsAndTypes, (:sicpNumber, :sicpNumber))
# ╔═╡ 3ea75801-d119-4ed1-86c5-b63e27e6e492
md"
---
###### *Constructor* of ordinary (*Scheme-like*) $$:sicpNumber$$ numbers
"
# ╔═╡ 020ae148-95e3-440b-ad3e-8651c8fe436c
function makeSicpNumber(n)
myGet(:make, (:sicpNumber,))(n)
end # function makeSicpNumber
# ╔═╡ a6708af2-69b1-4732-86d1-793b179a8b83
md"
---
###### *Test* calculations with ordinary (*Scheme-like*) $$:sicpNumber$$ numbers
"
# ╔═╡ 01ff1f86-ca11-439f-8d09-cb66146212fd
π
# ╔═╡ 7fdc31c4-29be-4c95-ae0d-69ebb20532c5
myGet(:make, (:sicpNumber,))(π)
# ╔═╡ 0a4f7989-be08-4e2c-b33b-78f6be817f72
sicpPi = makeSicpNumber(π)
# ╔═╡ 865aeb46-914b-45de-866f-0edb49e42ffe
sicpPi
# ╔═╡ e97ce8e6-031d-4080-b246-c4b4d0e021cf
cdr(sicpPi)
# ╔═╡ 1efac5f5-1421-4381-b753-ba007040fb3b
myPrint(sicpPi)
# ╔═╡ 9a5b4cb6-0a08-4352-9db4-bc7cbdd73460
sicpTwo = makeSicpNumber(2.0)
# ╔═╡ ca032b9e-230b-49a9-b546-0e0748660040
sicpTwo
# ╔═╡ 978ffc35-ad22-455d-8bef-c588d4326130
cdr(sicpTwo)
# ╔═╡ 44eb8206-0021-4227-8cfc-0d1136b10c5d
myPrint(sicpTwo)
# ╔═╡ 61ed1538-f952-4f66-b541-60afea9a8826
add(sicpPi, sicpTwo)
# ╔═╡ cc9e3e80-14d4-4116-ab53-ef8a7f0ebbd3
myPrint(add(sicpPi, sicpTwo))
# ╔═╡ 95306fea-3c3b-4082-90b9-1e8ac54d5af5
sub(sicpPi, sicpTwo)
# ╔═╡ 4fa5614d-1eac-4a7a-8a7a-c0e51f504be4
myPrint(sub(sicpPi, sicpTwo))
# ╔═╡ 5614e552-5baf-4192-b01c-835115e22e05
mul(sicpPi, sicpTwo)
# ╔═╡ 22029aba-c648-4089-b7bf-c9aab92c212d
myPrint(mul(sicpPi, sicpTwo))
# ╔═╡ 9b21719c-2955-4e1c-97b0-8c1458ae5c5c
div(sicpPi, sicpTwo)
# ╔═╡ eded9da5-e470-405e-bf32-186dd69752b8
myPrint(div(sicpPi, sicpTwo))
# ╔═╡ 3e710fe0-a2ff-4d42-8734-41597f59fbed
md"
---
##### *Rational* number package
"
# ╔═╡ 70c0ba7d-d6b4-4e1c-8095-a909a833ad7d
function installRationalPackage()
#====================================================================#
# local procedures
tag!(x) = attachTag(:rational, x)
#---------------------------------------------------------------------
numerRat(x) = car(x)
denomRat(x) = cdr(x)
#---------------------------------------------------------------------
printRat(x) = "$(numerRat(x))//$(denomRat(x))"
#---------------------------------------------------------------------
makeRat(x, y) =
let n = round(Int, x)
d = round(Int, y)
g = gcd(n, d)
cons(n / g, d / g)
end # let
#---------------------------------------------------------------------
addRat(x, y) =
makeRat(
numerRat(x) * denomRat(y) + numerRat(y) * denomRat(x),
denomRat(x) * denomRat(y))
#---------------------------------------------------------------------
subRat(x, y) =
makeRat(
numerRat(x) * denomRat(y) - numerRat(y) * denomRat(x),
denomRat(x) * denomRat(y))
#---------------------------------------------------------------------
mulRat(x, y) =
makeRat(
numerRat(x) * numerRat(y),
denomRat(x) * denomRat(y))
#---------------------------------------------------------------------
divRat(x, y) =
makeRat(
numerRat(x) * denomRat(y),
denomRat(x) * numerRat(y))
#---------------------------------------------------------------------
equalRat(x, y) =
numerRat(x) * denomRat(y) == denomRat(x) * numerRat(y)
#====================================================================#
# interface to rest of system
myPut!(:print,(:rational,), printRat)
myPut!(:numer,(:rational,), numerRat)
myPut!(:denom,(:rational,), denomRat)
#---------------------------------------------------------------------
myPut!(:make, (:rational,), (n, d) -> tag!(makeRat(n, d)))
#---------------------------------------------------------------------
myPut!(:add, (:rational, :rational), (x, y) -> tag!(addRat(x, y)))
myPut!(:sub, (:rational, :rational), (x, y) -> tag!(subRat(x, y)))
myPut!(:mul, (:rational, :rational), (x, y) -> tag!(mulRat(x, y)))
myPut!(:div, (:rational, :rational), (x, y) -> tag!(divRat(x, y)))
#---------------------------------------------------------------------
"installRationalPackage done"
#====================================================================#
end # function installRationalPackage
# ╔═╡ c986fde7-f56f-4eea-bf28-9984ace2a580
installRationalPackage()
# ╔═╡ 8927ee89-93da-49ed-83eb-645e901a36e5
getOpsOfType(myTableOfOpsAndTypes, (:rational,))
# ╔═╡ 4472a8e2-52d3-4902-b076-ce862f29f663
getOpsOfType(myTableOfOpsAndTypes, (:rational, :rational))
# ╔═╡ 6f5d7f81-c900-4340-afe8-b0046c5738c8
md"
---
###### *Constructor* of $$:rational$$ numbers
"
# ╔═╡ 712e83a5-f659-4a0b-859f-48895639aba7
function makeRational(n, d)
myGet(:make, (:rational,))(n, d)
end # function makeRational
# ╔═╡ 5e7fc3f3-b8e7-4243-b819-e78d88d6cc96
md"
---
###### *Test* calculations with $$:rational$$ numbers
"
# ╔═╡ bffc1f11-75da-4492-80aa-7408b07e33e7
oneHalf = makeRational(2, 4) # 2//4 ==> 1.0//2.0
# ╔═╡ 6631ff41-9a8e-4fdf-8e0a-06866f1ae4c1
myPrint(oneHalf) # "1.0//2.0"
# ╔═╡ 7d4b921a-ea56-44fd-a98c-097e2268e315
numerator(oneHalf)
# ╔═╡ 7b449582-33d1-4c6f-8378-46b92722be1b
denominator(oneHalf)
# ╔═╡ 7c610221-9c3a-4836-a308-d407d0fe918a
oneThird = makeRational(9, 27) # 9//27 ==> 1.0//3.0
# ╔═╡ a2e2978f-1457-4a10-89d5-d39ad61a9ad0
add(oneHalf, oneThird) # 1//2 + 1//3 = 3//6 + 2//6 ==> 5.0//6.0
# ╔═╡ 00c2f696-eaf7-4417-a1fd-5e1a0854a764
myPrint(add(oneHalf, oneThird)) # 1//2 + 1//3 ==> "5.0//6.0"
# ╔═╡ 7ba57322-b61a-4881-ae6d-60265feeccf6
sub(oneHalf, oneThird) # 1//2 - 1//3 = 3//6 - 2//6 = 1.0//6.0
# ╔═╡ da9a1cf1-a538-4ade-9426-52d832c3291d
mul(oneHalf, oneThird) # 1//2 * 1//3 = 1.0//6.0
# ╔═╡ 185f79dd-c285-461c-a91a-dbaad2d41651
div(oneHalf, oneThird) # 1//2 / 1//3 = 1//2 * 3//1 ==> 3.0//2.0
# ╔═╡ e5f83fe6-4bc1-4a94-847b-e294e23b8c4f
myPrint(div(oneHalf, oneThird)) # 1//2 / 1//3 ==> "3.0//2.0"
# ╔═╡ 3da1f59e-5f8a-4298-a4a8-1788e211e146
md"
---
##### *Complex* number package based on *rectangular* coordinates
"
# ╔═╡ 00ddddbb-b864-4e1e-8009-cdb90287cb81
function installRectangularPackage() # Ben's rectangular package
#================================================================================#
# internal procedures
tag!(x) = attachTag(:rectangular, x)
#----------------------------------------------------------
makeZFromRealImag(x, y) = cons(x, y)
makeZFromMagAng(r, a) = cons(r * cos(a), r * sin(a))
#----------------------------------------------------------
realPartRect(z) = car(z)
imagPartRect(z) = cdr(z)
magnitudeRect(z) = √(realPartRect(z)^2 + imagPartRect(z)^2)
angleRect(z) = atan(imagPartRect(z), realPartRect(z))
#----------------------------------------------------------
addComplexRect(z1, z2) =
makeZFromRealImag(
realPartRect(z1) + realPartRect(z2),
imagPartRect(z1) + imagPartRect(z2))
#--------------------------------------------
subComplexRect(z1, z2) =
makeZFromRealImag(
realPartRect(z1) - realPartRect(z2),
imagPartRect(z1) - imagPartRect(z2))
#--------------------------------------------
mulComplexRect(z1, z2) =
let
x1 = realPartRect(z1)
x2 = realPartRect(z2)
y1 = imagPartRect(z1)
y2 = imagPartRect(z2)
makeZFromRealImag(
(x1 * x2 - y1 * y2),
(x1 * y2 + y1 * x2))
end # let
#--------------------------------------------
divComplexRect(z1, z2) =
let
x1 = realPartRect(z1)
x2 = realPartRect(z2)
y1 = imagPartRect(z1)
y2 = imagPartRect(z2)
denominator = (x2^2 + y2^2)
makeZFromRealImag(
(x1 * x2 + y1 * y2) / denominator,
(x2 * y1 - x1 * y2) / denominator)
end # let
#================================================================================#
# interface to rest of system
myPut!(:makeZFromRealImag, (:rectangular,),
(x,y) -> tag!(makeZFromRealImag(x, y)))
myPut!(:makeZFromMagAng, (:rectangular,),
(r,a) -> tag!(makeZFromMagAng(r, a)))
#---------------------------------------------------------------------------------
myPut!(:realPart, (:rectangular,), realPartRect)
myPut!(:imagPart, (:rectangular,), imagPartRect)
myPut!(:magnitude, (:rectangular,), magnitudeRect)
myPut!(:angle, (:rectangular,), angleRect)
#---------------------------------------------------------------------------------
myPut!(:add, (:rectangular, :rectangular), (z1, z2)->tag!(addComplexRect(z1, z2)))
myPut!(:sub, (:rectangular, :rectangular), (z1, z2)->tag!(subComplexRect(z1, z2)))
myPut!(:mul, (:rectangular, :rectangular), (z1, z2)->tag!(mulComplexRect(z1, z2)))
myPut!(:div, (:rectangular, :rectangular), (z1, z2)->tag!(divComplexRect(z1, z2)))
#---------------------------------------------------------------------------------
"Ben's rectangular package installed"
#================================================================================#
end # function installRectangularPackage
# ╔═╡ c6b227b7-0fd0-403f-bb4c-af35d35bc4e4
installRectangularPackage()
# ╔═╡ d650355d-2f3d-45f0-9a88-299effe3667d
getOpsOfType(myTableOfOpsAndTypes, (:rectangular,))
# ╔═╡ 2d53e3c6-0835-45cd-9796-52d262bc0d55
getOpsOfType(myTableOfOpsAndTypes, (:rectangular, :rectangular))
# ╔═╡ abfe14e8-738a-4a1c-beb3-d3e6f0cc975f
md"
---
##### *Constructor* for *rectangular* complex numbers external to Ben's package
"
# ╔═╡ 44480674-6e5d-430e-a7be-5f297837697d
function makeZRectFromRealImag(x, y) # SICP, 1996, p.184
myGet(:makeZFromRealImag, (:rectangular,))(x, y)
end # function makeZRectFromRealImag
# ╔═╡ 385ce0a2-8753-4b6e-a7c6-844107b7cbc3
function makeZRectFromMagAng(r, a)
myGet(:makeZFromMagAng, (:rectangular,))(r, a)
end # function makeZRectFromMagAng
# ╔═╡ efdd4c60-0de1-4298-8ed7-7f02fe6aae3d
md"
---
##### *Test* constructions with *rectangular* packagage
"
# ╔═╡ bf573744-d9ec-4157-9f08-572d5289cd59
let
z1 = makeZRectFromRealImag(2, 1)
r1 = magnitude(z1) # √(2^2 + 1^2) = √5 ==> 2.236
z2 = makeZRectFromRealImag(realPart(z1)/r1, -2*imagPart(z1)/r1)
# (2 + 1i) + (2/2.36 - 2*1i/2.236) = (2 + 1i) + (0.894 - 0.894i)
# ==> (2.894 + 0.106i)
z3 = add(z1, z2)
end # let
# ╔═╡ ce57e202-3aa0-416b-9662-113d12f7ba52
let
z1 = makeZRectFromRealImag(2, 1)
r1 = magnitude(z1)
z2 = makeZRectFromRealImag(realPart(z1)/r1, -2*imagPart(z1)/r1)
# (2 + 1i) - (2/√5 - 2/√5i) = (2 + 1i) - (.89 -.89i) ==> (1.105 + 1.894)
z3 = sub(z1, z2)
end # let
# ╔═╡ db647038-275c-4f3b-a48c-46105942318e
let
z1 = makeZRectFromRealImag(2, 1)
z2 = makeZRectFromRealImag(2, 1)
# (2 + 1i)(2 + 1i) = (2^2 + 2*1i + 1i*2 + 1^2*i^2) = (4 + 4i -1) ==> (3 + 4i)
z3 = mul(z1, z2)
end # let
# ╔═╡ 01e612bd-d630-4186-8e10-da6211ab9cdb
let
z1 = makeZRectFromRealImag(2, 1) # ==> 2.0, 1.0i
z2 = makeZRectFromMagAng(2.24, 0.46) # ==> 2.0, 1.0i
mul(z1, z2) # ==> 3.0, 4.0i
end # let
# ╔═╡ 341f88ee-db9e-4854-8a76-9abc26bfa1d5
let
z1 = makeZRectFromRealImag(2, -1)
z2 = makeZRectFromRealImag(2, 2)
# (2 - 1i)(2 + 2i) = (4 + 4i - 2i + 2) ==> (6 + 2i)
z3 = mul(z1, z2)
end # let
# ╔═╡ 06022d25-4a62-43f0-bcf6-9a0629f7d917
let
z1 = makeZRectFromRealImag(3, -1)
z2 = makeZRectFromRealImag(1, 2)
# (3 - 1i)/(1 + 2i) = ((3 - 1i)(1 - 2i))/((1 + 2i)(1 - 2i))
# = (3 -6i - 1i - 2)/(1 + 4) = (1 - 7i)/5 = 1/5 - (7/5)i ==> 0.2 - 1.4i
z3 = div(z1, z2)
end # let
# ╔═╡ 07fd573e-4c43-4416-8a3f-0a0f5bf746fd
md"
---
##### *Complex* number package based on *polar* coordinates
"
# ╔═╡ 4e90ff13-3841-481b-9a5f-1a9dfa18bfd8
function installPolarPackage() # Alyssa's polar package
#========================================================================#
# internal procedures
#-------------------------------------------------------------------------
tag!(x) = attachTag(:polar, x)
#-------------------------------------------------------------------------
makeZFromMagAng(r, a) = cons(r, a)
makeZFromRealImag(x, y) = cons(√(x^2 + y^2), atan(y, x))
#-------------------------------------------------------------------------
realPartPolar(z) = magnitudePolar(z) * cos(anglePolar(z))
imagPartPolar(z) = magnitudePolar(z) * sin(anglePolar(z))
magnitudePolar(z) = car(z)
anglePolar(z) = cdr(z)
#-------------------------------------------------------------------------
addComplexPolar(z1, z2) =
let z3 = makeZFromRealImag(
realPartPolar(z1) + realPartPolar(z2),
imagPartPolar(z1) + imagPartPolar(z2))
tag!(makeZFromMagAng(
magnitudePolar(z3),
anglePolar(z3)))
end # let
#--------------------------------------------
subComplexPolar(z1, z2) =
let z3 = makeZFromRealImag(
realPartPolar(z1) - realPartPolar(z2),
imagPartPolar(z1) - imagPartPolar(z2))
tag!(makeZFromMagAng(
magnitudePolar(z3),
anglePolar(z3)))
end # let
#--------------------------------------------
mulComplexPolar(z1, z2) =
tag!(makeZFromMagAng(
magnitudePolar(z1) * magnitudePolar(z2),
anglePolar(z1) + anglePolar(z2)))
#--------------------------------------------
divComplexPolar(z1, z2) =
tag!(makeZFromMagAng(
magnitudePolar(z1) / magnitudePolar(z2),
anglePolar(z1) - anglePolar(z2)))
#========================================================================#
# interface to rest of system
#-------------------------------------------------------------------------
myPut!(:makeZFromRealImag, (:polar,),
(x, y) -> tag!(makeZFromRealImag(x, y)))
myPut!(:makeZFromMagAng, (:polar,),
(r, a) -> tag!(makeZFromMagAng(r, a)))
#-------------------------------------------------------------------------
myPut!(:real, (:polar,), realPartPolar)
myPut!(:imag, (:polar,), imagPartPolar)
myPut!(:magnitude, (:polar,), magnitudePolar)
myPut!(:angle, (:polar,), anglePolar)
#-------------------------------------------------------------------------
myPut!(:add, (:polar, :polar), (z1, z2) -> tag!(addComplexPolar(z1, z2)))
myPut!(:sub, (:polar, :polar), (z1, z2) -> tag!(subComplexPolar(z1, z2)))
myPut!(:mul, (:polar, :polar), (z1, z2) -> tag!(mulComplexPolar(z1, z2)))
myPut!(:div, (:polar, :polar), (z1, z2) -> tag!(divComplexPolar(z1, z2)))
#-------------------------------------------------------------------------
"Alyssa's polar package installed"
#========================================================================#
end # function installPolarPackage
# ╔═╡ ddf22741-2fbe-46bc-abc7-052be48a5a9d
installPolarPackage()
# ╔═╡ 304759c2-1322-49a0-bade-e7a2452f6774
getOpsOfType(myTableOfOpsAndTypes, (:polar,)) # get all ops (rows) for type (column) ':polar'
# ╔═╡ 8cdb4671-6f71-42bf-94e9-1d31343038e5
getOpsOfType(myTableOfOpsAndTypes, (:polar, :polar))
# ╔═╡ 3631639d-e62e-4669-b6c3-7730206dfbe7
md"
---
##### *Constructor* for polar complex numbers *external* to Alyssa's package
"
# ╔═╡ 0bc77445-062f-4b55-9a24-67b9588355b0
function makeZPolarFromRealImag(x, y) # SICP, 1996, p.184
myGet(:makeZFromRealImag, (:polar,))(x, y)
end # function makeZPolarFromRealImag
# ╔═╡ a54939b5-aac8-4d76-b18b-f887973453a7
function makeZPolarFromMagAng(r, a) # SICP, 1996, p.184
myGet(:makeZFromMagAng, (:polar,))(r, a)
end # function makeZPolarFromMagAng
# ╔═╡ 004a465e-2c46-4869-aa9e-81073ca38999
md"
##### *Test* calculations of complex numbers in *polar* form
"
# ╔═╡ 1de38341-0d9d-4b32-be47-2945dac2b7c6
let
z0 = makeZRectFromRealImag(2, 1)
z1 = makeZPolarFromMagAng(magnitude(z0), angle(z0))
z2 = makeZRectFromRealImag(
realPart(z0)/magnitude(z0), -realPart(z0)/magnitude(z0))
z3 = makeZPolarFromMagAng(magnitude(z2), angle(z2))
add(z1, z3) # (2.8964 ∠ 0.0365) or (2.8945 + 0.1054i)
end # let
# ╔═╡ 9b7837b3-1b41-46c9-a10f-d872f92cf184
let
z0 = makeZRectFromRealImag(2, 1)
z1 = makeZPolarFromMagAng(magnitude(z0), angle(z0))
z2 = makeZRectFromRealImag(
realPart(z0)/magnitude(z0), -realPart(z0)/magnitude(z0))
z3 = makeZPolarFromMagAng(magnitude(z2), angle(z2))
sub(z1, z3) # (2.1934 ∠ 1.0425) or (1.1056 + 1.8944i)
end # let
# ╔═╡ 9ef822cc-93aa-4d10-856a-774a3318cabf
let
z0 = makeZRectFromRealImag(2, -1)
z1 = makeZPolarFromMagAng(magnitude(z0), angle(z0))
z2 = makeZRectFromRealImag(2, 2)
z3 = makeZPolarFromMagAng(magnitude(z2), angle(z2))
mul(z1, z3) # (6.3246 ∠ 0.3218) or (6.0000 + 2.0000i)
end # let
# ╔═╡ 45ecf3da-2375-4312-b440-055b7728d22b
let
z0 = makeZRectFromRealImag(3, -1)
z1 = makeZPolarFromMagAng(magnitude(z0), angle(z0))
z2 = makeZRectFromRealImag(1, 2)
z3 = makeZPolarFromMagAng(magnitude(z2), angle(z2))
# (1.41 ∠ 4.85) = (1.41 ∠ 4.85-2π) = (1.41 ∠ -1.43)
div(z1, z3) # (1.41 ∠ -1.43) or (0.20 − 1.4i)
end # let
# ╔═╡ e36a07c1-cf62-4e65-9797-309bb6e89f93
md"
---
#### 2.5.1.2 *Idiomatic* Julia operators
"
# ╔═╡ 3fe2583c-cc43-4f87-9ea5-923d1dd5649b
md"
###### *Ordinary* Julia numbers $$\;\mathbb N, \mathbb Z, \mathbb R$$
"
# ╔═╡ 20f53637-1681-4201-9ca3-9907f6c8ae05
md"
###### $$\pi \in \mathbb R$$
"
# ╔═╡ b158f84c-f814-4837-915d-cbf3ffd30502
π
# ╔═╡ 4562f05d-21c9-490e-ba28-a70636b00d9c
π + 2
# ╔═╡ 7304e21b-b117-4ce1-8105-d4d1017d9d12
π + 2.0
# ╔═╡ bf0667f9-1d5e-4b72-b928-2576cec79427
md"
###### *Rational* Julia numbers $$\;q \in \mathbb Q$$
"
# ╔═╡ 82ccfffd-ed23-43c5-b083-0732d5ebf4a6
md"
###### $$q \in \mathbb Q$$
"
# ╔═╡ 41d813f1-f8df-475b-b487-a7b1de5f2cc8
oneQuarter = 1//4
# ╔═╡ b1004c19-f96b-4131-808d-3c901c36bbd6
π + 2//1
# ╔═╡ 5a558a28-95ef-4d51-ac74-a67c119118c1
md"
###### *Complex* Julia numbers $$\;z \in \mathbb Z$$
"
# ╔═╡ ef1fcb75-d216-4886-89b3-d556f99b5d8a
Complex(2, 0)
# ╔═╡ 9e4dd8e7-d7ed-4b03-9de8-c6ec3e806119
md"
###### *Addition* of *rectangular* complex numbers
"
# ╔═╡ a7682770-d6dd-4ea2-ba2f-c3056851d6f6
let
z1 = Complex(2, 1)
r1 = abs(z1) # abs = magnitude: √(2^2 + 1^2) = √5 ==> 2.236
z2 = Complex(real(z1)/r1, -2*imag(z1)/r1)
# (2 + 1i) + (2/2.36 - 2*1i/2.236) = (2 + 1i) + (0.894 - 0.894i)
# ==> (2.894 + 0.106i)
z3 = z1 + z2
end # let
# ╔═╡ 2b08a987-fd65-4790-9c98-73579826e071
md"
###### *Subtraction* of *rectangular* complex numbers
"
# ╔═╡ ad364342-a042-49b7-a767-d4d39c128fc5
let
z1 = Complex(2, 1)
r1 = abs(z1)
z2 = Complex(real(z1)/r1, -2*imag(z1)/r1)
# (2 + 1i) - (2/√5 - 2/√5i) = (2 + 1i) - (.89 -.89i) ==> (1.105 + 1.894)
z3 = z1 - z2
end # let
# ╔═╡ 269bb77f-c77b-4c6b-a123-cda5647b12d0
md"
###### *Multiplication* of *rectangular* complex numbers
"
# ╔═╡ d2344839-95e1-44ab-9470-5c14520f1b2f
let
z1 = Complex(2, 1)
z2 = Complex(2, 1)
# (2 + 1i)(2 + 1i) = (2^2 + 2*1i + 1i*2 + 1^2*i^2) = (4 + 4i -1) ==> (3 + 4i)
z3 = z1 * z2
end # let
# ╔═╡ 8b4e408c-891d-442d-9f66-ae710fd3620c
let
z1 = Complex(2, -1)
z2 = Complex(2, 2)
# (2 - 1i)(2 + 2i) = (4 + 4i - 2i + 2) ==> (6 + 2i)
z3 = z1 * z2
end # let
# ╔═╡ 45be7d9c-0fc5-456b-9957-8d5b135472a8
md"
###### *Division* of *rectangular* complex numbers
"
# ╔═╡ edd18f49-4451-4be2-98bd-08f819c87ca3
let
z1 = Complex(3, -1)
z2 = Complex(1, 2)
# (3 - 1i)/(1 + 2i) = ((3 - 1i)(1 - 2i))/((1 + 2i)(1 - 2i))
# = (3 -6i - 1i - 2)/(1 + 4) = (1 - 7i)/5 = 1/5 - (7/5)i ==> 0.2 - 1.4i
z3 = z1 / z2
end # let
# ╔═╡ 0b7cd85b-cf32-4ce5-981f-e801c41eecdf
md"
---
###### *Multiplication* of *polar* complex numbers (using *Euler's* formula)
[*Euler's* formula](https://en.wikipedia.org/wiki/Euler%27s_formula):
$$z = x + yi = |z|(cos \phi + i \cdot sin \phi) = r\cdot e^{i\phi}$$
"
# ╔═╡ 2def8fc2-0b8f-43e2-9ac4-4ac0fa4bc999
let
angle = Base.angle
z0 = Complex(2, -1)
# z1 = makeZPolarFromMagAng(myMagnitude(z0), myAngle(z0))
z1 = abs(z0) * exp(angle(z0)*im)
z2 = Complex(2, 2)
# z3 = makeZPolarFromMagAng(myMagnitude(z2), myAngle(z2))
z3 = abs(z2) * exp(angle(z2)*im)
# z4 = mul(z1, z3) ==> (6.3246 ∠ 0.3218) or (6.0000 + 2.0000i)
z4 = abs(z0) * abs(z2) * exp((angle(z0) + angle(z2))*im)
end # let
# ╔═╡ f47e8917-eaae-4377-8873-373a5fef0537
md"
---
###### *Division* of *polar* complex numbers (using *Euler's* formula)
[*Euler's* formula](https://en.wikipedia.org/wiki/Euler%27s_formula):
$$z = x + yi = |z|(cos \phi + i \cdot sin \phi) = r\cdot e^{i\phi}$$
"
# ╔═╡ d5fbb6ed-8572-4d77-aeb6-52d6a281995d
let
angle = Base.angle
z0 = Complex(3, -1)
# z1 = makeZPolarFromMagAng(myMagnitude(z0), myAngle(z0))
z1 = abs(z0) * exp(angle(z0)*im)
# z2 = makeZRectFromRealImag(1, 2)
z2 = Complex(1, 2)
# z3 = makeZPolarFromMagAng(myMagnitude(z2), myAngle(z2))
z3 = abs(z2) * exp(angle(z2)*im)
# (1.41 ∠ 4.85) = (1.41 ∠ 4.85-2π) = (1.41 ∠ -1.43)
# div(z1, z3) # (1.41 ∠ -1.43) or (0.20 − 1.4i)
z4 = abs(z0) / abs(z2) * exp((angle(z0) - angle(z2))*im)
end # let
# ╔═╡ 120e829a-db3e-4861-8d6c-87379d0b5072
md"
---
##### References
- **Abelson, H., Sussman, G.J. & Sussman, J.**; Structure and Interpretation of Computer Programs, Cambridge, Mass.: MIT Press, (2/e), 1996, [https://sarabander.github.io/sicp/](https://sarabander.github.io/sicp/), last visit 2022/12/08
"
# ╔═╡ 3c5134dc-82a4-4499-bb7e-d85efed47b13
md"
---
##### end of ch. 2.5.1
"
# ╔═╡ dcc52aa9-52ea-448f-9394-1c0e8b736635
md"
====================================================================================
This is a **draft** under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. Comments, suggestions for improvement and bug reports are welcome: **claus.moebus(@)uol.de**
====================================================================================
"
# ╔═╡ 00000000-0000-0000-0000-000000000001
PLUTO_PROJECT_TOML_CONTENTS = """
[deps]
"""
# ╔═╡ 00000000-0000-0000-0000-000000000002
PLUTO_MANIFEST_TOML_CONTENTS = """
# This file is machine-generated - editing it directly is not advised
julia_version = "1.8.2"
manifest_format = "2.0"
project_hash = "da39a3ee5e6b4b0d3255bfef95601890afd80709"
[deps]
"""
# ╔═╡ Cell order:
# ╟─3a789ed0-6f25-11ed-3bcc-9d85e82fddbd
# ╟─b352cb37-d623-40e4-aa96-93bf93c8a36a
# ╠═b14e59e2-7b83-4c62-ae1a-3b65eeeda575
# ╠═341a48b4-5614-46c6-916d-4c0593d54659
# ╠═46562440-ef41-48d5-9e4b-bba582da7c4c
# ╠═1a9a7132-626a-4b15-b382-62576c71a5c6
# ╟─c65da2ce-3803-4e48-8585-7763445417dd
# ╠═074de4c6-ba2f-4df9-b468-0c3c513c46c4
# ╠═698d288d-c9ff-450f-ad58-28a7ab47a9f8
# ╠═adfdcc85-da65-4623-9d6a-2133b7ab871d
# ╟─af74f59d-26db-428e-8e9b-d6605e5f427b
# ╟─f6daf9a8-e367-4ee9-8eb1-cfb13b8ac81f
# ╠═95b595b9-7a35-47ff-b6d2-d3c4331d90b8
# ╠═1528b18b-0469-469e-b467-71bd3571a096
# ╠═fe78d635-b2b9-4e2e-8e3f-61a4eb78f1fc
# ╠═0a6f350d-0a00-4087-b226-0409729a9e65
# ╠═5235492c-e307-45b1-8256-8a8b4c748f3c
# ╟─124192da-7076-43fc-962a-d0c10883cdbd
# ╠═dd346a4c-8399-439d-8677-977dbce90b8f
# ╠═61676c9a-b533-409c-afb4-9caed5d33238
# ╠═71aee367-6d51-41ff-9d65-9cf0e313e81d
# ╟─8e888d27-0b63-471b-9130-e696b3c6a7e9
# ╟─0fa115b4-f02e-4c70-bb13-2c230b807b90
# ╠═6785099b-8f50-4b65-8dbb-0b514af96bbf
# ╠═e791fe67-9ebd-4965-bdb8-49823ca2b1f0
# ╟─e25fdfac-e91c-4d47-bb43-2eadc90608c1
# ╠═4565c0ac-7900-406a-9d81-520e1aa9cba0
# ╟─0a35072a-f929-4791-9b58-810f0846f70e
# ╠═a576dcd3-5992-4605-8bd4-b366130e687a
# ╟─66ad6609-fa02-4c5d-936b-091de42c5bf2
# ╠═d47fb6bd-a6b0-4c47-ad68-2a719c086003
# ╟─738c8e2e-06de-4fb0-b57a-28bac1755ff4
# ╠═2a734656-20d2-437b-abe2-5f2437b4addb
# ╟─6c05818e-bd48-42f4-bb9c-240aee64b8d5
# ╠═1923749d-ae33-4145-b2c1-868dbae2a43e
# ╠═f6db0bdd-82e0-4d2e-8ee0-5f46a47d6779
# ╠═3966cebe-8aa5-4bf0-8dc2-4ad5c5ba1874
# ╟─3ea75801-d119-4ed1-86c5-b63e27e6e492
# ╠═020ae148-95e3-440b-ad3e-8651c8fe436c
# ╟─a6708af2-69b1-4732-86d1-793b179a8b83
# ╠═01ff1f86-ca11-439f-8d09-cb66146212fd
# ╠═7fdc31c4-29be-4c95-ae0d-69ebb20532c5
# ╠═0a4f7989-be08-4e2c-b33b-78f6be817f72
# ╠═865aeb46-914b-45de-866f-0edb49e42ffe
# ╠═e97ce8e6-031d-4080-b246-c4b4d0e021cf
# ╠═1efac5f5-1421-4381-b753-ba007040fb3b
# ╠═9a5b4cb6-0a08-4352-9db4-bc7cbdd73460
# ╠═ca032b9e-230b-49a9-b546-0e0748660040
# ╠═978ffc35-ad22-455d-8bef-c588d4326130
# ╠═44eb8206-0021-4227-8cfc-0d1136b10c5d
# ╠═61ed1538-f952-4f66-b541-60afea9a8826
# ╠═cc9e3e80-14d4-4116-ab53-ef8a7f0ebbd3
# ╠═95306fea-3c3b-4082-90b9-1e8ac54d5af5
# ╠═4fa5614d-1eac-4a7a-8a7a-c0e51f504be4
# ╠═5614e552-5baf-4192-b01c-835115e22e05
# ╠═22029aba-c648-4089-b7bf-c9aab92c212d
# ╠═9b21719c-2955-4e1c-97b0-8c1458ae5c5c
# ╠═eded9da5-e470-405e-bf32-186dd69752b8
# ╟─3e710fe0-a2ff-4d42-8734-41597f59fbed