-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_nli.py
55 lines (42 loc) · 1.3 KB
/
main_nli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import pickle
from evo_core.nsga2 import nsga2
# Configurations
generation_num = 20
population_size = 2
# dataset = 'toy'
dataset = "SNLI"
# dataset = "MNLI"
plm = "google/flan-t5-base"
# plm = "google/flan-t5-small"
# plm = "t5-base"
# plm = "t5-small"
# plm = "bert-base-uncased"
evo_data = nsga2(
population_size,
num_generations=generation_num,
dataset=dataset,
plm=plm,
)
pickle.dump(evo_data, open("nsga2_result_v4.pkl", "wb"))
pareto_front = evo_data["fronts"][0]
for individual in pareto_front:
print("-" * 100)
print(f"Prompt: {individual.instruction}")
print(f"Objectives: {individual.objectives}")
evo_data = pickle.load(open("nsga2_result_v4.pkl", "rb"))
# PLOT THE PARETO FRONTS
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
ax.set_xlabel("Metrics")
ax.set_ylabel("Perplexity")
ax.set_zlabel("Prompt Length")
colors = ["r", "g", "b", "y", "c", "m", "k", "w"]
for front in evo_data["fronts"]:
prompt_length = [individual.objectives[0] for individual in front]
perplexity = [individual.objectives[1] for individual in front]
metrics = [individual.objectives[2] for individual in front]
ax.scatter(metrics, perplexity, prompt_length, c=colors.pop(0))
plt.savefig("pareto_front.png", dpi=1000)
plt.show()
print("Done!")