-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmadmedianrule.m
92 lines (80 loc) · 2.78 KB
/
madmedianrule.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function [I,value] = madmedianrule(a,type)
% Returns a logical vector that flags outliers as 1s based
% on the MAD-median rule described in Wilcox 2012 p 97.
%
% FORMAT: I = madmedianrule(a,type)
%
% INPUTS:
% a is a vector or matrix. In the latter case,
% the MAD median rule is applied column-wise.
%
% type indicates the method to use
%
% for type = 1, MADS = b_n*1.4826*median(abs(a - median(a))
% b_n is the finite sample correction factor described in
% William, J Stat Computation and Simulation, 81, 11, 2011
% 1.4826 is the consistancy factor (the std) for the Gaussian distribution
%
% for type = 2, MADN = median(abs(a - median(a)) ./ 0.6745
% rescaled MAD by the .6745 to estimate the std of the Gaussian
% distribution - see Wilcox 2012 p 75.
% Cyril Pernet / Guillaume Rousselet
% ---------------------------------
% Copyright (C) Corr_toolbox 2012
k = 2.2414; % = sqrt(chi2inv(0.975,1))
[n,p]=size(a);
M = median(a);
MAD=median(abs(a - repmat(median(a),n,1)));
switch type
case 1
% Median Absolute Deviation with finite sample correction factor
if n == 2
bn=1.197; % 1.196;
elseif n == 3
bn=1.49; % 1.495;
elseif n == 4
bn=1.36; % 1.363;
elseif n == 5
bn=1.217; % 1.206;
elseif n == 6
bn=1.189; % 1.200;
elseif n == 7
bn=1.138; % 1.140;
elseif n == 8
bn=1.127; % 1.129;
elseif n == 9
bn=1.101; % 1.107;
else
bn=n/(n-0.8);
end
MADS=repmat((MAD.*1.4826.*bn),n,1);
I = a > (repmat(M,[n 1])+(k.*MADS));
I = I+isnan(a);
value = MADS(1,:);
case 2
% Normalized Median Absolute Deviation
MADN = repmat((MAD./.6745),n,1); % same as MAD.*1.4826 :-)
I = (abs(a-repmat(M,n,1)) ./ MADN) > k;
I = I+isnan(a);
value = MADN(1,:);
case 3 % S outliers
value = NaN(n,p);
for p=1:size(a,2)
tmp = a(:,p);
points = find(~isnan(tmp));
tmp(isnan(tmp)) = [];
% compte all distances
n = length(tmp);
for i=1:n
j = points(i);
indices = [1:n]; indices(i) = [];
value(j,p) = median(abs(tmp(i) - tmp(indices)));
end
% get the S estimator
% consistency factor c = 1.1926;
Sn = 1.1926*median(value(points,p));
% get the outliers in a normal distribution
I(:,p) = (value(:,p) ./ Sn) > k; % no scaling needed as S estimates already std(data)
I(:,p) = I(:,p)+isnan(a(:,p));
end
end