forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_mkldnn.py
1073 lines (929 loc) · 43.6 KB
/
test_mkldnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import itertools
import functools
import unittest
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
import torch
import torch.nn.functional as F
import torch.jit
import torch.backends.mkldnn
from torch.utils import mkldnn as mkldnn_utils
from torch.testing._internal.common_utils import TestCase, \
run_tests, TemporaryFileName, gradcheck, gradgradcheck, IS_WINDOWS
# batched grad doesn't support mkldnn
gradcheck = functools.partial(gradcheck, check_batched_grad=False)
gradgradcheck = functools.partial(gradgradcheck, check_batched_grad=False)
# For OneDNN bf16 path, OneDNN requires the cpu has intel avx512 with avx512bw,
# avx512vl, and avx512dq at least. So we will skip the test case if one processor
# is not meet the requirement.
@functools.lru_cache(maxsize=None)
def has_bf16_support():
import sys
if sys.platform != 'linux':
return False
with open("/proc/cpuinfo", encoding="ascii") as f:
lines = f.read()
return all(word in lines for word in ["avx512bw", "avx512vl", "avx512dq"])
types = [torch.float, torch.bfloat16]
# Comment the line below to find out the CI machines having MKL-DNN build disabled
@unittest.skipIf(not torch._C.has_mkldnn, "MKL-DNN build is disabled")
class TestMkldnn(TestCase):
def test_conversion(self):
for cpu_tensor in [torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')),
torch.randn((1, 2, 3, 4, 5),
dtype=torch.float, device=torch.device('cpu'))[:, :, :, :, 1]]:
cpu_tensor.requires_grad_()
# float cpu tensor to mkldnn float tensor or bfloat tensor.
for dtype1 in types:
mkldnn_tensor = cpu_tensor.to_mkldnn(dtype1)
self.assertEqual(mkldnn_tensor.dtype, dtype1)
cpu_tensor_1 = mkldnn_tensor.to_dense()
# not given dtype for to_dense, mkldnn tensor has same dtype with cpu tensor
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
# mkldnn float/bfloat tensor to cpu float or bfloat tensor
for dtype2 in types:
cpu_tensor_2 = mkldnn_tensor.to_dense(dtype2)
self.assertEqual(cpu_tensor_2.dtype, dtype2)
atol = 1e-5 if dtype1 == torch.float and dtype2 == torch.float else 1e-2
self.assertEqual(cpu_tensor, cpu_tensor_2.float(), atol=atol, rtol=0)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4]))
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
if dtype1 == torch.float:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size())
else:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor.element_size() / 2)
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
# bfloat cpu tensor to mkldnn float tensor or bfloat tensor.
cpu_tensor_bf16 = cpu_tensor.bfloat16()
for dtype1 in types:
mkldnn_tensor = cpu_tensor_bf16.to_mkldnn(dtype1)
self.assertEqual(mkldnn_tensor.dtype, dtype1)
cpu_tensor_1 = mkldnn_tensor.to_dense()
# not given dtype for to_dense, mkldnn tensor has same dtype with cpu tensor
self.assertEqual(mkldnn_tensor.dtype, cpu_tensor_1.dtype)
# mkldnn float/bfloat tensor to cpu float or bfloat tensor
for dtype2 in types:
cpu_tensor_2 = mkldnn_tensor.to_dense(dtype2)
self.assertEqual(cpu_tensor_2.dtype, dtype2)
self.assertEqual(cpu_tensor_bf16, cpu_tensor_2.bfloat16(), atol=1e-5, rtol=0)
self.assertEqual(mkldnn_tensor.device, torch.device('cpu'))
self.assertEqual(mkldnn_tensor.size(), torch.Size([1, 2, 3, 4]))
self.assertEqual(mkldnn_tensor.numel(), cpu_tensor.numel())
if dtype1 == torch.bfloat16:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor_bf16.element_size())
else:
self.assertEqual(mkldnn_tensor.element_size(), cpu_tensor_bf16.element_size() * 2)
self.assertRaisesRegex(RuntimeError,
"Cannot access data pointer of Tensor that doesn't have storage",
lambda: mkldnn_tensor.data_ptr() != 0)
def test_copy(self):
x = torch.randn(4, 5, dtype=torch.float32)
mkldnn_x = x.to_mkldnn()
mkldnn_y = torch.randn(4, 5, dtype=torch.float32).to_mkldnn()
mkldnn_z = torch.randn(4, 10, dtype=torch.float32).to_mkldnn()
mkldnn_y.copy_(mkldnn_x)
self.assertEqual(x, mkldnn_y.to_dense())
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: only support same size tensor.",
lambda: mkldnn_z.copy_(mkldnn_x))
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: between mkldnn layout and dense Tensors is not implemented! "
"Found self type = torch.FloatTensor and src type = Mkldnntorch.FloatTensor",
lambda: x.copy_(mkldnn_x))
self.assertRaisesRegex(RuntimeError,
"copy_mkldnn_: between mkldnn layout and dense Tensors is not implemented! "
"Found self type = Mkldnntorch.FloatTensor and src type = torch.FloatTensor",
lambda: mkldnn_x.copy_(x))
def test_unsupported(self):
# unsupported types and unsupported types with gpu
for dtype in [torch.double, torch.half, torch.uint8, torch.int8,
torch.short, torch.int, torch.long]:
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cpu')).to_mkldnn()
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=dtype, device=torch.device('cuda')).to_mkldnn()
# supported type with gpu
if torch.cuda.is_available():
with self.assertRaises(RuntimeError) as context:
torch.randn(1, 2, 3, 4, dtype=torch.float, device=torch.device('cuda')).to_mkldnn()
# some factory functions
for creator in [torch.ones, torch.randn, torch.rand]:
with self.assertRaises(RuntimeError) as context:
creator(1, 2, 3, 4, dtype=torch.float, device=torch.device('cpu'), layout=torch._mkldnn)
def test_autograd_to_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32, requires_grad=True)
def func(root):
return root.to_mkldnn().to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradgradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_autograd_from_mkldnn(self):
# MKLDNN only supports float32
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
def func(root):
return root.to_dense()
# because MKLDNN only supports float32, we need to lessen the precision.
# these numbers are just empirical results that seem to work.
self.assertWarnsRegex(UserWarning,
'double precision floating point',
lambda: gradcheck(func, [root], atol=4e-2, rtol=1e-2))
def test_detach(self):
root = torch.randn(4, 5, dtype=torch.float32).to_mkldnn().requires_grad_()
detach = root.detach()
self.assertEqual((4, 5), detach.size())
self.assertFalse(detach.requires_grad)
self.assertTrue(root.requires_grad)
detach_ = root.detach_()
self.assertEqual((4, 5), detach_.size())
self.assertFalse(detach_.requires_grad)
self.assertFalse(root.requires_grad)
def test_repr(self):
self.assertTrue("layout=torch._mkldnn" in str(torch.randn((1, 2, 3, 4),
dtype=torch.float, device=torch.device('cpu')).to_mkldnn()))
def _test_conv_base(self, dim):
conv_module = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d, 3: torch.nn.Conv3d}
input_shapes = {1: (224,), 2: (224, 224), 3: (55, 55, 55)}
options = itertools.product([True, False], [True, False], [1, 2], [1, 4])
for train, bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
x = torch.randn(x_shape, dtype=torch.float32)
conv = conv_module[dim](in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).float()
x1 = x.clone()
x2 = x.clone().to_mkldnn()
if not train:
mkldnn_conv = mkldnn_utils.to_mkldnn(copy.deepcopy(conv))
elif train and dim != 1:
# TODO: enable conv1d training.
x1.requires_grad_()
x2.requires_grad_()
mkldnn_conv = copy.deepcopy(conv)
with torch.backends.mkldnn.flags(enabled=False):
y_aten = conv(x1)
if train and dim != 1:
loss1 = y_aten.sum()
loss1.backward()
if not train or (train and dim != 1):
y_mkldnn = mkldnn_conv(x2).to_dense()
self.assertEqual(y_aten, y_mkldnn)
if not train:
self._test_serialization(mkldnn_conv, (x.to_mkldnn(),))
self._test_tracing(mkldnn_conv, (x.to_mkldnn(),))
elif dim != 1:
loss2 = y_mkldnn.sum()
loss2.backward()
self.assertTrue(x2.grad.is_mkldnn)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(conv.weight.grad,
mkldnn_conv.weight.grad,
atol=1e-3,
rtol=1e-3)
if bias:
self.assertEqual(conv.bias.grad, mkldnn_conv.bias.grad)
def test_conv1d(self):
self._test_conv_base(dim=1)
def test_conv2d(self):
self._test_conv_base(dim=2)
def test_conv3d(self):
self._test_conv_base(dim=3)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_conv_bf16_base(self, dim):
conv_module = {1: torch.nn.Conv1d, 2: torch.nn.Conv2d, 3: torch.nn.Conv3d}
input_shapes = {1: (224,), 2: (224, 224), 3: (55, 55, 55)}
options = itertools.product([True, False], [1, 2], [1, 4])
for bias, dilation, groups in options:
N = torch.randint(3, 10, (1,)).item()
M = torch.randint(1, 3, (1,)).item() * groups
C = torch.randint(1, 3, (1,)).item() * groups
x_shape = (N, C) + input_shapes[dim]
x = torch.randn(x_shape, dtype=torch.float32)
conv = conv_module[dim](in_channels=C,
out_channels=M,
kernel_size=3,
stride=2,
padding=1,
dilation=dilation,
bias=bias,
groups=groups).float()
x_bf16 = x.bfloat16()
if has_bf16_support():
mkldnn_conv = mkldnn_utils.to_mkldnn(copy.deepcopy(conv))
mkldnn_conv_bf16 = mkldnn_utils.to_mkldnn(copy.deepcopy(conv), torch.bfloat16)
y = mkldnn_conv(x.to_mkldnn()).to_dense()
y_bf16 = mkldnn_conv_bf16(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
with self.assertRaisesRegex(RuntimeError, msg):
mkldnn_conv_bf16 = mkldnn_utils.to_mkldnn(copy.deepcopy(conv), torch.bfloat16)
y_bf16 = mkldnn_conv_bf16(x_bf16.to_mkldnn()).to_dense(torch.float32)
def test_conv1d_bf16(self):
self._test_conv_bf16_base(dim=1)
def test_conv2d_bf16(self):
self._test_conv_bf16_base(dim=2)
def test_conv3d_bf16(self):
self._test_conv_bf16_base(dim=3)
def test_conv2d_legacy_jit_model(self):
"""
MKLDNN integration used to serialize models with 5d weight for grouped
convolutions, we'd like to preserve this behavior
"""
g = 4
conv2d = torch.nn.Conv2d(16, 16, 3, groups=g)
conv2d_mkldnn = torch.utils.mkldnn.to_mkldnn(conv2d)
# contrive legacy conv2d module with a 5-d weight
o, i, h, w = conv2d.weight.shape
weight_5d = conv2d.weight.reshape((g, o // g, i, h, w))
conv2d_mkldnn.weight = weight_5d.to_mkldnn()
x = torch.randn(1, 16, 8, 8)
with TemporaryFileName() as fname:
torch.jit.save(conv2d_mkldnn, fname)
conv2d_loaded = torch.jit.load(fname)
self.assertEqual(conv2d_mkldnn.weight.ndimension(), 5)
self.assertEqual(conv2d_loaded.weight.ndimension(), 4)
self.assertEqual(
conv2d(x),
conv2d_loaded(x.to_mkldnn()).to_dense())
def test_relu(self):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = torch.relu(x1)
y2 = torch.relu(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_relu_(self):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = torch.relu_(x1.clone())
y2 = torch.relu_(x2.clone()).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_relu_bf16_base(self, name):
x = torch.randn((4, 5), dtype=torch.float32) * 10
x_bf16 = x.bfloat16()
fn = getattr(torch, name)
if has_bf16_support():
y = fn(x.to_mkldnn()).to_dense()
y_bf16 = fn(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = r"bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: fn(x_bf16.to_mkldnn()))
def test_relu_bf16(self):
self._test_relu_bf16_base("relu")
def test_relu_inplace_bf16(self):
self._test_relu_bf16_base("relu_")
def _test_max_pool_base(self, dim, input):
pool_module = {2: torch.nn.MaxPool2d, 3: torch.nn.MaxPool3d}
for stride in [1, 2, 3]:
for ceil_mode in [False, True]:
max_pool = pool_module[dim](
kernel_size=3 if not ceil_mode else 7,
stride=stride,
padding=1,
ceil_mode=ceil_mode)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = max_pool(x1)
y2 = max_pool(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_max_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
self._test_max_pool_base(dim=2, input=x)
def test_max_pool3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for D, H, W in [(64, 64, 64), (35, 39, 35), (16, 19, 20), [7, 8, 9]]:
x = torch.randn(N, C, D, H, W, dtype=torch.float32) * 10
self._test_max_pool_base(dim=3, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_max_pool_bf16_base(self, dim, input):
pool_module = {2: torch.nn.MaxPool2d, 3: torch.nn.MaxPool3d}
x_bf16 = input.bfloat16()
for stride in [1, 2, 3]:
for ceil_mode in [False, True]:
max_pool = pool_module[dim](
kernel_size=3 if not ceil_mode else 7,
stride=stride,
padding=1,
ceil_mode=ceil_mode)
if has_bf16_support():
y = max_pool(input.to_mkldnn()).to_dense()
y_bf16 = max_pool(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=0.1, rtol=1e-3)
else:
msg = "mkldnn_max_pool%dd: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq" % dim
self.assertRaisesRegex(RuntimeError,
msg,
lambda: max_pool(x_bf16.to_mkldnn()))
def test_max_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
self._test_max_pool_bf16_base(dim=2, input=x)
def test_max_pool3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for D, H, W in [(64, 64, 64), (35, 39, 35), (16, 19, 20), [7, 8, 9]]:
x = torch.randn(N, C, D, H, W, dtype=torch.float32) * 10
self._test_max_pool_bf16_base(dim=3, input=x)
def test_max_pool2d_stride_none(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
for H, W in [(64, 64), (35, 39), (16, 19), [7, 8]]:
x = torch.randn(N, C, H, W, dtype=torch.float32) * 10
for ceil_mode in [False, True]:
y1 = F.max_pool2d(
x,
kernel_size=3 if not ceil_mode else 7,
stride=None,
padding=1,
ceil_mode=ceil_mode)
y2 = F.max_pool2d(
x.to_mkldnn(),
kernel_size=3 if not ceil_mode else 7,
stride=None,
padding=1,
ceil_mode=ceil_mode)
self.assertEqual(y1, y2.to_dense())
def test_max_pool_unsupported(self):
# OneDNN not support dilation max_pooling, will be avilabled in v2.0.
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
# 2d dilation case
x = torch.randn(N, C, 7, 7, dtype=torch.float32).to_mkldnn()
max_pool2d = torch.nn.MaxPool2d(
kernel_size=3,
stride=3,
padding=1,
dilation=2)
self.assertRaisesRegex(RuntimeError,
'mkldnn_max_pool2d does not support dilation case',
lambda: max_pool2d(x))
# 3d dilation case
x = torch.randn(N, C, 7, 7, 7, dtype=torch.float32).to_mkldnn()
max_pool3d = torch.nn.MaxPool3d(
kernel_size=3,
stride=3,
padding=1,
dilation=2)
self.assertRaisesRegex(RuntimeError,
'mkldnn_max_pool3d does not support dilation case',
lambda: max_pool3d(x))
def _test_avg_pool_base(self, dim, input):
avg_module = {2: torch.nn.AvgPool2d, 3: torch.nn.AvgPool3d}
for count_include_pad in [True, False]:
avg_pool = avg_module[dim](
kernel_size=3,
stride=2,
padding=1,
count_include_pad=count_include_pad)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = avg_pool(x1)
y2 = avg_pool(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_base(dim=2, input=x)
def test_avg_pool3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_base(dim=3, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_avg_pool_bf16_base(self, dim, input):
avg_module = {2: torch.nn.AvgPool2d, 3: torch.nn.AvgPool3d}
x_bf16 = input.bfloat16()
for count_include_pad in [True, False]:
avg_pool = avg_module[dim](
kernel_size=3,
stride=2,
padding=1,
count_include_pad=count_include_pad)
if has_bf16_support():
y = avg_pool(input.to_mkldnn()).to_dense()
y_bf16 = avg_pool(x_bf16.to_mkldnn()).to_dense(torch.float)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_avg_pool%dd: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq" % dim
self.assertRaisesRegex(RuntimeError,
msg,
lambda: avg_pool(x_bf16.to_mkldnn()))
def test_avg_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_bf16_base(dim=2, input=x)
def test_avg_pool3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, 64, dtype=torch.float32) * 10
self._test_avg_pool_bf16_base(dim=3, input=x)
def test_avg_pool2d_stride_none(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 64, 64, dtype=torch.float32) * 10
for count_include_pad in [True, False]:
y1 = F.avg_pool2d(
x,
kernel_size=3,
stride=None,
padding=1,
count_include_pad=count_include_pad)
y2 = F.avg_pool2d(
x.to_mkldnn(),
kernel_size=3,
stride=None,
padding=1,
count_include_pad=count_include_pad)
self.assertEqual(y1, y2.to_dense())
def test_adaptive_avg_pool2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100
adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
y1 = adaptive_avg_pool2d(x1)
y2 = adaptive_avg_pool2d(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def test_adaptive_avg_pool2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 10, (1,)).item()
x = torch.randn(N, C, 224, 224, dtype=torch.float32) * 100
x_bf16 = x.bfloat16()
adaptive_avg_pool2d = torch.nn.AdaptiveAvgPool2d(7)
if has_bf16_support():
y = adaptive_avg_pool2d(x.to_mkldnn()).to_dense()
y_bf16 = adaptive_avg_pool2d(x.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_adaptive_avg_pool2d: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: adaptive_avg_pool2d(x_bf16.to_mkldnn()))
def _test_batch_norm_base(self, dim, channels, input):
bn_module = {2 : torch.nn.BatchNorm2d, 3 : torch.nn.BatchNorm3d}
bn = bn_module[dim](channels).float().train(False)
mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn))
self.assertEqual(
bn(input),
mkldnn_bn(input.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_bn, (input.to_mkldnn(),))
self._test_tracing(mkldnn_bn, (input.to_mkldnn(),))
def _test_batch_norm_train_base(self, dim, channels, input):
# TODO: support 3d batchnorm training.
bn_module = {2 : torch.nn.BatchNorm2d}
# TODO: support none affine.
options = itertools.product([True], [True, False])
for affine, track_running_stats in options:
bn = bn_module[dim](
num_features=channels,
affine=affine,
track_running_stats=track_running_stats).float().train(True)
mkldnn_bn = copy.deepcopy(bn)
x1 = input.clone().requires_grad_()
x2 = input.clone().to_mkldnn().requires_grad_()
y1 = bn(x1)
y2 = mkldnn_bn(x2).to_dense()
loss1 = y1.sum()
loss2 = y2.sum()
loss1.backward()
loss2.backward()
self.assertEqual(y1, y2)
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(bn.weight.grad, mkldnn_bn.weight.grad, rtol=1e-3, atol=1e-3)
if track_running_stats:
self.assertEqual(bn.running_mean, mkldnn_bn.running_mean)
self.assertEqual(bn.running_var, mkldnn_bn.running_var, rtol=1e-5, atol=1e-5)
def test_batch_norm_2d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
self._test_batch_norm_base(dim=2, channels=C, input=x)
self._test_batch_norm_train_base(dim=2, channels=C, input=x)
def test_batch_norm_3d(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 30, 30, 30, dtype=torch.float32) * 10
self._test_batch_norm_base(dim=3, channels=C, input=x)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def _test_batch_norm_bf16_base(self, dim, channels, input):
bn_module = {2 : torch.nn.BatchNorm2d, 3 : torch.nn.BatchNorm3d}
x_bf16 = input.bfloat16()
# TODO: support training
for train in [False]:
bn = bn_module[dim](channels).float().train(train)
mkldnn_bn = mkldnn_utils.to_mkldnn(copy.deepcopy(bn))
if has_bf16_support():
y = bn(input.to_mkldnn().to_dense())
y_bf16 = bn(input.to_mkldnn().to_dense(torch.float))
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_batch_norm: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: bn(x_bf16.to_mkldnn()))
def test_batch_norm_2d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
self._test_batch_norm_bf16_base(dim=2, channels=C, input=x)
def test_batch_norm_3d_bf16(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
x = torch.randn(N, C, 30, 30, 30, dtype=torch.float32) * 10
self._test_batch_norm_bf16_base(dim=3, channels=C, input=x)
def test_add(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
alpha = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# add
self.assertEqual(
x + y,
(mx + my).to_dense())
self.assertEqual(
torch.add(x, y, alpha=alpha),
torch.add(mx, my, alpha=alpha).to_dense())
# add_
x += y
mx += my
self.assertEqual(x, mx.to_dense())
# add_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.add(x, y, alpha=alpha, out=out)
torch.add(mx, my, alpha=alpha, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
# add_out inplace case: first input
torch.add(x, y, alpha=alpha, out=x)
torch.add(mx, my, alpha=alpha, out=mx)
self.assertEqual(x, mx.to_dense())
# add_out inplace case: second input
torch.add(x, y, alpha=alpha, out=y)
torch.add(mx, my, alpha=alpha, out=my)
self.assertEqual(y, my.to_dense())
def test_mul(self):
N = torch.randint(3, 10, (1,)).item()
C = torch.randint(3, 100, (1,)).item()
value = torch.randn(1, dtype=torch.float32).item()
x = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
y = torch.randn(N, C, 35, 45, dtype=torch.float32) * 10
mx = x.to_mkldnn()
my = y.to_mkldnn()
# mul
self.assertEqual(
x * y,
(mx * my).to_dense())
self.assertEqual(
x * value,
(mx * value).to_dense())
self.assertEqual(
torch.mul(x, y),
torch.mul(mx, my).to_dense())
self.assertEqual(
torch.mul(x, value),
torch.mul(mx, value).to_dense())
# mul_
x *= y
mx *= my
self.assertEqual(x, mx.to_dense())
x *= value
mx *= value
self.assertEqual(x, mx.to_dense())
# mul_out
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, y, out=out)
torch.mul(mx, my, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
out = x.clone()
mkldnn_out = out.to_mkldnn()
torch.mul(x, value, out=out)
torch.mul(mx, value, out=mkldnn_out)
self.assertEqual(out, mkldnn_out.to_dense())
def test_0_dimension_tensor(self):
x = torch.rand([20, 20, 1, 1], dtype=torch.float)
y = torch.rand([20, 20, 0, 1], dtype=torch.float)
# unary ops work without modification
out_relu = torch.relu(y)
out_relu_mkldnn = torch.relu(y.to_mkldnn()).to_dense()
self.assertEqual(out_relu, out_relu_mkldnn)
out_mul = x * y
out_mul_mkldnn = (x.to_mkldnn() * y.to_mkldnn()).to_dense()
self.assertEqual(out_mul, out_mul_mkldnn)
out_add = x + y
out_add_mkldnn = (x.to_mkldnn() + y.to_mkldnn()).to_dense()
self.assertEqual(out_add, out_add_mkldnn)
x.requires_grad_(True)
y.requires_grad_(True)
with self.assertRaisesRegex(RuntimeError, "0-dimension Tensor in training"):
x.to_mkldnn() + y.to_mkldnn()
with self.assertRaisesRegex(RuntimeError, "must match"):
torch.rand([5]).to_mkldnn() + torch.rand([0]).to_mkldnn()
C = 7
m = torch.nn.Conv2d(C, C, 3)
x = torch.randn(0, C, C, 8, dtype=torch.float)
out_eager = m(x)
out_mkldnn = mkldnn_utils.to_mkldnn(m)(x)
self.assertEqual(out_eager, out_mkldnn)
def test_view(self):
x = torch.randn(3, 4, 5, dtype=torch.float32).to_mkldnn()
self.assertRaisesRegex(RuntimeError,
"Change to use reshape",
lambda: x.view(x.size(0), -1))
def test_reshape(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
size = (x.size(0), -1)
self.assertEqual(
x.reshape(size),
x.to_mkldnn().reshape(size).to_dense(),
)
# test whether share same memory for plain format tensor
y = x.to_mkldnn()
z = y.reshape(size).add_(y.reshape(size))
self.assertEqual(
y.reshape(size).to_dense(),
z.to_dense(),
)
def test_reshape_blocked_format(self):
# construct an mkldnn blocked tensor with mkldnn conv2d
C = 7
m = mkldnn_utils.to_mkldnn(torch.nn.Conv2d(C, C, 3))
x = torch.randn(1, C, 8, 8).to_mkldnn()
# mkldnn tensor w/ blocked format
y_block = m(x)
# aten tensor w/ plain format
y_plain = y_block.to_dense()
y_block_reshape = y_block.reshape(C, -1)
y_plain_reshape = y_plain.reshape(C, -1)
self.assertEqual(y_plain_reshape, y_block_reshape.to_dense())
def test_reshape_backward(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
size = (x.size(0), -1)
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
in_features = 20
out_features = torch.randint(3, 100, (1,)).item()
linear = torch.nn.Linear(in_features, out_features).float()
y1 = linear(x1.reshape(size)).sum()
y2 = linear(x2.reshape(size).to_dense()).sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
def test_clone(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
self.assertEqual(
x.clone(),
x.to_mkldnn().clone().to_dense(),
)
# test whether share same memory
y = x.to_mkldnn()
z = y.clone().add_(y)
self.assertNotEqual(
y.to_dense(),
z.to_dense(),
)
def test_transpose(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim1 in range(x.ndim):
for dim2 in range(x.ndim):
self.assertEqual(
x.transpose(dim1, dim2),
x.to_mkldnn().transpose(dim1, dim2).to_dense(),
)
def test_linear_non_contiguous_weight(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
w = torch.randn(in_features, out_features, dtype=torch.float32)
for bias in [True, False]:
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
linear = torch.nn.Linear(in_features, out_features).float()
linear.weight = torch.nn.Parameter(w.t())
mkldnn_linear = copy.deepcopy(linear)
y1 = linear(x1).sum()
y2 = mkldnn_linear(x2).to_dense().sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(linear.weight.grad, mkldnn_linear.weight.grad)
if bias:
self.assertEqual(linear.bias.grad, mkldnn_linear.bias.grad)
def test_linear(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
for bias in [True, False]:
linear = torch.nn.Linear(in_features, out_features, bias=bias).float()
mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear))
self.assertEqual(
linear(x),
mkldnn_linear(x.to_mkldnn()).to_dense())
self._test_serialization(mkldnn_linear, (x.to_mkldnn(),))
self._test_tracing(mkldnn_linear, (x.to_mkldnn(),))
def test_linear_backward(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
for bias in [True, False]:
x1 = x.clone().requires_grad_()
x2 = x.clone().to_mkldnn().requires_grad_()
linear = torch.nn.Linear(in_features, out_features).float()
mkldnn_linear = copy.deepcopy(linear)
y1 = linear(x1).sum()
y2 = mkldnn_linear(x2).to_dense().sum()
y1.backward()
y2.backward()
self.assertEqual(x1.grad, x2.grad.to_dense())
self.assertEqual(linear.weight.grad, mkldnn_linear.weight.grad)
if bias:
self.assertEqual(linear.bias.grad, mkldnn_linear.bias.grad)
@unittest.skipIf(IS_WINDOWS, "Limit support for bf16 path")
def test_linear_bf16(self):
in_features = torch.randint(3, 10, (1,)).item()
out_features = torch.randint(3, 100, (1,)).item()
x = torch.randn(3, in_features, dtype=torch.float32) * 10
x_bf16 = x.bfloat16()
for bias in [True, False]:
linear = torch.nn.Linear(in_features, out_features, bias=bias).float()
mkldnn_linear = mkldnn_utils.to_mkldnn(copy.deepcopy(linear))
mkldnn_linear_bf16 = mkldnn_utils.to_mkldnn(copy.deepcopy(linear), torch.bfloat16)
if has_bf16_support():
y = mkldnn_linear(x.to_mkldnn()).to_dense()
y_bf16 = mkldnn_linear_bf16(x_bf16.to_mkldnn()).to_dense(torch.float32)
self.assertEqual(y, y_bf16, atol=1e-1, rtol=1e-3)
else:
msg = "mkldnn_linear: bf16 path needs the cpu support avx512bw, avx512vl and avx512dq"
self.assertRaisesRegex(RuntimeError,
msg,
lambda: mkldnn_linear_bf16(x_bf16.to_mkldnn()))
def test_softmax(self):
x = torch.randn(3, 4, 5, dtype=torch.float32) * 10
for dim in range(x.ndim):
softmax = torch.nn.Softmax(dim=dim)
self.assertEqual(
softmax(x),
softmax(x.to_mkldnn()).to_dense())
def test_sigmoid(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
mkldnn_x = x.to_mkldnn()
self.assertEqual(
torch.sigmoid(x),
torch.sigmoid(mkldnn_x).to_dense(),
)
# inplace
torch.sigmoid_(x)
torch.sigmoid_(mkldnn_x)
self.assertEqual(x, mkldnn_x.to_dense())
def test_tanh(self):
x = torch.randn(4, 5, dtype=torch.float32) * 10
mkldnn_x = x.to_mkldnn()
self.assertEqual(
torch.tanh(x),
torch.tanh(mkldnn_x).to_dense(),
)
# inplace
torch.tanh_(x)
torch.tanh_(mkldnn_x)
self.assertEqual(x, mkldnn_x.to_dense())
def _test_serialization(self, module, inputs):
with TemporaryFileName() as fname:
torch.jit.save(module, fname)
loaded = torch.jit.load(fname)
self.assertEqual(
module(*inputs).to_dense(),
loaded(*inputs).to_dense())
def _test_tracing(self, module, inputs):
traced = torch.jit.trace(module, inputs, check_trace=False)
self.assertEqual(
module(*inputs).to_dense(),
traced(*inputs).to_dense())