forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_mobile_optimizer.py
632 lines (522 loc) · 27.1 KB
/
test_mobile_optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import unittest
import torch
import torch.nn as nn
import torch.backends.xnnpack
import torch.utils.bundled_inputs
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
from torch.utils.mobile_optimizer import (LintCode,
generate_mobile_module_lints,
optimize_for_mobile)
from torch.nn import functional as F
from torch._C import MobileOptimizerType
from torch.testing._internal.common_quantized import override_quantized_engine
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
FileCheck = torch._C.FileCheck
class TestOptimizer(TestCase):
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
def test_optimize_for_mobile(self):
batch_size = 2
input_channels_per_group = 6
height = 16
width = 16
output_channels_per_group = 6
groups = 4
kernel_h = kernel_w = 3
stride_h = stride_w = 1
pad_h = pad_w = 1
dilation = 1
input_channels = input_channels_per_group * groups
output_channels = output_channels_per_group * groups
kernels = (kernel_h, kernel_w)
strides = (stride_h, stride_w)
paddings = (pad_h, pad_w)
dilations = (dilation, dilation)
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
conv_bias_shape = (output_channels)
input_data = torch.rand((batch_size, input_channels, height, width))
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
conv_bias = torch.rand((output_channels))
result = F.conv2d(input_data, conv_weight, conv_bias, strides, paddings, dilations, groups)
weight_output_dim = 24
linear_input_shape = result.shape[1]
linear_weight_shape = (weight_output_dim, linear_input_shape)
class MyTestModule(torch.nn.Module):
def __init__(self):
super(MyTestModule, self).__init__()
self.conv_weight = torch.nn.Parameter(torch.rand(conv_weight_shape))
self.conv_bias = torch.nn.Parameter(torch.rand((conv_bias_shape)))
self.linear_weight = torch.nn.Parameter(torch.rand(linear_weight_shape))
self.linear_bias = torch.nn.Parameter(torch.rand((weight_output_dim)))
self.strides = strides
self.paddings = paddings
self.dilations = dilations
self.groups = groups
def forward(self, x):
o = F.conv2d(x, self.conv_weight, self.conv_bias,
self.strides, self.paddings, self.dilations, self.groups)
o = F.relu(o)
x = o.permute([0, 2, 3, 1])
o = F.linear(x, self.linear_weight, self.linear_bias)
o = o + x
return F.relu(o)
@torch.jit.export
def foo(self, x):
o = F.conv2d(x, self.conv_weight, self.conv_bias,
self.strides, self.paddings, self.dilations, self.groups)
o = F.relu(o)
x = o.permute([0, 2, 3, 1])
o = F.linear(x, self.linear_weight, self.linear_bias)
o = o + x
return F.relu(o)
class BNTestModule(torch.nn.Module):
def __init__(self):
super(BNTestModule, self).__init__()
self.conv = torch.nn.Conv2d(1, 20, 5, 1)
self.bn = torch.nn.BatchNorm2d(num_features=20)
self.bn.eps = 0.0023
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
data_shape = (batch_size, input_channels, height, width)
input_data = torch.normal(1, 20, size=data_shape)
scripted_model = torch.jit.script(MyTestModule())
scripted_model.eval()
initial_result = scripted_model(input_data)
initial_foo_result = scripted_model.foo(input_data)
optimized_scripted_model = optimize_for_mobile(scripted_model, preserved_methods=['foo'])
optimized_result = optimized_scripted_model(input_data)
optimized_foo_result = optimized_scripted_model.foo(input_data)
FileCheck().check_not("Tensor = aten::conv2d") \
.check_not("Tensor = prim::CallFunction") \
.check_not("prepacked::conv2d_clamp_prepack") \
.check_count("prepacked::conv2d_clamp_run", 1, exactly=True) \
.check_not("prepacked::linear_clamp_prepack") \
.check_count("prepacked::linear_clamp_run", 1, exactly=True) \
.check_not("aten::add(") \
.check_not("aten::relu(") \
.check_count("aten::_add_relu(", 1, exactly=True) \
.run(optimized_scripted_model.graph)
torch.testing.assert_allclose(initial_result, optimized_result, rtol=1e-2, atol=1e-3)
FileCheck().check_not("Tensor = aten::conv2d") \
.check_not("Tensor = prim::CallFunction") \
.check_not("prepacked::conv2d_clamp_prepack") \
.check_count("prepacked::conv2d_clamp_run", 1, exactly=True) \
.check_not("prepacked::linear_clamp_prepack") \
.check_count("prepacked::linear_clamp_run", 1, exactly=True) \
.check_not("aten::add(") \
.check_not("aten::relu(") \
.check_count("aten::_add_relu(", 1, exactly=True) \
.run(optimized_scripted_model.foo.graph)
torch.testing.assert_allclose(initial_foo_result, optimized_foo_result, rtol=1e-2, atol=1e-3)
optimization_blocklist_no_prepack = {MobileOptimizerType.INSERT_FOLD_PREPACK_OPS}
optimized_scripted_model_no_prepack = optimize_for_mobile(scripted_model, optimization_blocklist_no_prepack)
optimized_result_no_prepack = optimized_scripted_model_no_prepack(input_data)
FileCheck().check_count("Tensor = aten::conv2d", 1, exactly=True) \
.check_not("prepacked::linear_clamp_run") \
.check_not("prepacked::conv2d_clamp_run") \
.run(optimized_scripted_model_no_prepack.graph)
torch.testing.assert_allclose(initial_result, optimized_result_no_prepack, rtol=1e-2, atol=1e-3)
bn_test_module = BNTestModule()
bn_scripted_module = torch.jit.script(bn_test_module)
bn_scripted_module.eval()
self.assertEqual(len(torch.jit.export_opnames(bn_scripted_module)), 14)
FileCheck().check_count("prim::CallMethod[name=\"forward\"]", 2, exactly=True) \
.run(str(get_forward(bn_scripted_module._c).graph))
optimization_blocklist_no_prepack = {MobileOptimizerType.INSERT_FOLD_PREPACK_OPS}
bn_fold_scripted_module = optimize_for_mobile(bn_scripted_module, optimization_blocklist_no_prepack)
self.assertEqual(len(torch.jit.export_opnames(bn_fold_scripted_module)), 1)
bn_input = torch.rand(1, 1, 6, 6)
torch.testing.assert_allclose(bn_scripted_module(bn_input), bn_fold_scripted_module(bn_input), rtol=1e-2, atol=1e-3)
optimization_blocklist_no_fold_bn = {MobileOptimizerType.CONV_BN_FUSION}
no_bn_fold_scripted_module = optimize_for_mobile(bn_scripted_module, optimization_blocklist_no_fold_bn)
FileCheck().check_count("aten::batch_norm", 1, exactly=True) \
.run(str(get_forward_graph(no_bn_fold_scripted_module._c)))
bn_input = torch.rand(1, 1, 6, 6)
torch.testing.assert_allclose(bn_scripted_module(bn_input), no_bn_fold_scripted_module(bn_input), rtol=1e-2, atol=1e-3)
class MyMobileOptimizedTagTest(torch.nn.Module):
def __init__(self):
super(MyMobileOptimizedTagTest, self).__init__()
self.linear_weight = torch.nn.Parameter(torch.rand(linear_weight_shape))
self.linear_bias = torch.nn.Parameter(torch.rand((weight_output_dim)))
def forward(self, x):
o = F.linear(x, self.linear_weight, self.linear_bias)
return F.relu(o)
mobile_optimized_tag_module = MyMobileOptimizedTagTest()
m = torch.jit.script(mobile_optimized_tag_module)
m.eval()
opt_m = optimize_for_mobile(m)
tag = getattr(opt_m, "mobile_optimized", None)
self.assertTrue(tag)
class MyPreserveMethodsTest(torch.nn.Module):
def __init__(self):
super(MyPreserveMethodsTest, self).__init__()
self.linear_weight = torch.nn.Parameter(torch.rand(linear_weight_shape))
self.linear_bias = torch.nn.Parameter(torch.rand((weight_output_dim)))
def forward(self, x):
o = F.linear(x, self.linear_weight, self.linear_bias)
return F.relu(o)
@torch.jit.export
def preserveThis(self):
pass
preserve_method_module = MyPreserveMethodsTest()
m = torch.jit.script(preserve_method_module)
m.eval()
opt_m = optimize_for_mobile(m)
no_preserveThis = getattr(opt_m, "preserveThis", None)
self.assertEqual(no_preserveThis, None)
opt_m = optimize_for_mobile(m, preserved_methods=["preserveThis"])
preserveThis = getattr(opt_m, "preserveThis", None)
self.assertNotEqual(preserveThis, None)
class OptimizeNoForwardTest(torch.nn.Module):
def __init__(self):
super(OptimizeNoForwardTest, self).__init__()
self.l = nn.Linear(10, 100)
self.l2 = nn.Linear(100, 1)
self.d = nn.Dropout(p=0.2)
@torch.jit.export
def foo(self, x):
x = self.d(F.relu(self.l(x)))
x = self.l2(x)
x = x + torch.ones(1, 100)
return F.relu(x)
input_data = torch.ones(1, 10)
m = torch.jit.script(OptimizeNoForwardTest())
m.eval()
initial_result = m.foo(input_data)
optimized_scripted_model = optimize_for_mobile(m, preserved_methods=['foo'])
optimized_result = optimized_scripted_model.foo(input_data)
FileCheck().check_not("dropout.__") \
.check_count("aten::_add_relu(", 1, exactly=True) \
.run(optimized_scripted_model.foo.graph)
torch.testing.assert_allclose(initial_result, optimized_result, rtol=1e-2, atol=1e-3)
class BNTestNoForwardModule(torch.nn.Module):
def __init__(self):
super(BNTestNoForwardModule, self).__init__()
self.conv = torch.nn.Conv2d(1, 20, 5, 1)
self.bn = torch.nn.BatchNorm2d(num_features=20)
self.bn.eps = 0.0023
@torch.jit.export
def foo(self, x):
x = self.conv(x)
x = self.bn(x)
return x
bn_test_no_forward_module = BNTestNoForwardModule()
bn_no_forward_scripted_module = torch.jit.script(bn_test_no_forward_module)
bn_no_forward_scripted_module.eval()
self.assertEqual(len(torch.jit.export_opnames(bn_no_forward_scripted_module)), 14)
FileCheck().check_count("prim::CallMethod[name=\"forward\"]", 2, exactly=True) \
.run(bn_no_forward_scripted_module.foo.graph)
bn_fold_no_forward_scripted_module = optimize_for_mobile(bn_no_forward_scripted_module, preserved_methods=['foo'])
self.assertEqual(len(torch.jit.export_opnames(bn_fold_no_forward_scripted_module)), 1)
bn_input = torch.rand(1, 1, 6, 6)
torch.testing.assert_allclose(
bn_no_forward_scripted_module.foo(bn_input),
bn_fold_no_forward_scripted_module.foo(bn_input),
rtol=1e-2,
atol=1e-3)
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
def test_quantized_conv_no_asan_failures(self):
# There were ASAN failures when fold_conv_bn was run on
# already quantized conv modules. Verifying that this does
# not happen again.
if 'qnnpack' not in torch.backends.quantized.supported_engines:
return
class Child(nn.Module):
def __init__(self):
super(Child, self).__init__()
self.conv2 = nn.Conv2d(1, 1, 1)
def forward(self, x):
x = self.conv2(x)
return x
class Parent(nn.Module):
def __init__(self):
super(Parent, self).__init__()
self.quant = torch.quantization.QuantStub()
self.conv1 = nn.Conv2d(1, 1, 1)
self.child = Child()
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.child(x)
x = self.dequant(x)
return x
with override_quantized_engine('qnnpack'):
model = Parent()
model.qconfig = torch.quantization.get_default_qconfig('qnnpack')
torch.quantization.prepare(model, inplace=True)
model(torch.randn(4, 1, 4, 4))
torch.quantization.convert(model, inplace=True)
model = torch.jit.script(model)
# this line should not have ASAN failures
model_optim = optimize_for_mobile(model)
def test_generate_mobile_module_lints(self):
class MyTestModule(torch.nn.Module):
def __init__(self):
super(MyTestModule, self).__init__()
self.fc = torch.nn.Linear(4, 4)
self.dropout = torch.nn.Dropout(p=0.5)
def forward(self, inputs):
out = self.fc(inputs)
out = self.dropout(out)
return out
class MyBNModule(torch.nn.Module):
def __init__(self):
super(MyBNModule, self).__init__()
self.bn = torch.nn.BatchNorm2d(4, affine=True)
def forward(self, inputs):
bn = self.bn(inputs)
return bn
class MyBundledInputModule(torch.nn.Module):
def __init__(self):
super(MyBundledInputModule, self).__init__()
def forward(self, inputs):
return inputs
def get_lint_count_by_type(lint_type, module_lint_List):
return len([lint_dict for lint_dict in module_lint_List if lint_dict['name'] == lint_type.name])
test_module = torch.jit.script(MyTestModule())
test_module_lint_list = generate_mobile_module_lints(test_module)
self.assertEqual(len(test_module_lint_list), 4)
self.assertEqual(get_lint_count_by_type(LintCode.BUNDLED_INPUT, test_module_lint_list), 1)
self.assertEqual(get_lint_count_by_type(LintCode.DROPOUT, test_module_lint_list), 1)
self.assertEqual(get_lint_count_by_type(LintCode.REQUIRES_GRAD, test_module_lint_list), 2)
bn_module = torch.jit.script(MyBNModule())
bn_module_lint_list = generate_mobile_module_lints(bn_module)
self.assertEqual(len(bn_module_lint_list), 4)
self.assertEqual(get_lint_count_by_type(LintCode.BUNDLED_INPUT, bn_module_lint_list), 1)
self.assertEqual(get_lint_count_by_type(LintCode.BATCHNORM, bn_module_lint_list), 1)
self.assertEqual(get_lint_count_by_type(LintCode.REQUIRES_GRAD, bn_module_lint_list), 2)
bi_module = torch.jit.script(MyBundledInputModule())
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
bi_module, [(torch.tensor([1]),)], [])
bi_module_lint_list = generate_mobile_module_lints(bi_module)
self.assertEqual(len(bi_module_lint_list), 0)
def test_preserve_bundled_inputs_methods(self):
class MyBundledInputModule(torch.nn.Module):
def __init__(self):
super(MyBundledInputModule, self).__init__()
def forward(self, inputs):
return inputs
class MyIncompleteBundledInputModule(torch.nn.Module):
def __init__(self):
super(MyIncompleteBundledInputModule, self).__init__()
def forward(self, inputs):
return inputs
@torch.jit.export
def get_all_bundled_inputs(self):
pass
bi_module = torch.jit.script(MyBundledInputModule())
module_optim_bi_not_preserved = optimize_for_mobile(bi_module)
# Expected to be False since no bundled inputs methods were added
self.assertFalse(
hasattr(module_optim_bi_not_preserved, 'get_all_bundled_inputs') or
hasattr(module_optim_bi_not_preserved, 'get_num_bundled_inputs')
)
# Add bundled inputs methods to the module
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
bi_module, [(torch.tensor([1]),)], [])
# Now they should be preserved
module_optim_bi_preserved = optimize_for_mobile(bi_module)
# All of the bundled inputs methods were preserved
self.assertTrue(
hasattr(module_optim_bi_preserved, 'get_all_bundled_inputs') and
hasattr(module_optim_bi_preserved, 'get_num_bundled_inputs')
)
bundled_input = module_optim_bi_preserved.get_all_bundled_inputs()[0]
module_optim_bi_preserved(*bundled_input)
# If not all 3 bundled inputs methods are present in the module,
# we will not try to preserve them unless specified by the user.
incomplete_bi_module = torch.jit.script(MyIncompleteBundledInputModule())
incomplete_bi_module_optim = optimize_for_mobile(incomplete_bi_module)
self.assertFalse(hasattr(incomplete_bi_module_optim, 'get_all_bundled_inputs'))
# Specifically preserve get_all_bundled_inputs even if it's the only one
# bundled inputs method available.
incomplete_bi_module_optim = optimize_for_mobile(incomplete_bi_module, preserved_methods=['get_all_bundled_inputs'])
self.assertTrue(hasattr(incomplete_bi_module_optim, 'get_all_bundled_inputs'))
@unittest.skipUnless(torch.backends.xnnpack.enabled,
" XNNPACK must be enabled for these tests."
" Please build with USE_XNNPACK=1.")
def test_hoist_conv_packed_params(self):
if 'qnnpack' not in torch.backends.quantized.supported_engines:
return
class Standalone(nn.Module):
def __init__(self):
super(Standalone, self).__init__()
self.quant = torch.quantization.QuantStub()
self.conv1 = nn.Conv2d(1, 1, 1)
self.conv2 = nn.Conv2d(1, 1, 1)
self.relu = nn.ReLU()
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.relu(x)
x = self.dequant(x)
return x
def fuse_model(self):
torch.quantization.fuse_modules(self, [['conv2', 'relu']], inplace=True)
pass
class Child(nn.Module):
def __init__(self):
super(Child, self).__init__()
self.conv1 = nn.Conv2d(1, 1, 1)
def forward(self, x):
x = self.conv1(x)
return x
class Parent(nn.Module):
def __init__(self):
super(Parent, self).__init__()
self.quant = torch.quantization.QuantStub()
self.conv1 = nn.Conv2d(1, 1, 1)
self.child = Child()
# TODO: test nn.Sequential after #42039 is fixed
self.dequant = torch.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv1(x)
x = self.child(x)
x = self.dequant(x)
return x
def fuse_model(self):
pass
with override_quantized_engine('qnnpack'):
def _quant_script_and_optimize(model):
model.qconfig = torch.quantization.get_default_qconfig('qnnpack')
model.fuse_model()
torch.quantization.prepare(model, inplace=True)
model(torch.randn(4, 1, 4, 4))
torch.quantization.convert(model, inplace=True)
model = torch.jit.script(model)
model_optim = optimize_for_mobile(model)
return model, model_optim
# basic case
m, m_optim = _quant_script_and_optimize(Standalone())
FileCheck().check_not("Conv2d = prim::GetAttr[name=\"conv1\"]") \
.check_count("__torch__.torch.classes.quantized.Conv2dPackedParamsBase = prim::Constant", 2, exactly=True) \
.run(m_optim.graph)
self.assertFalse(hasattr(m_optim, "conv1"))
self.assertFalse(hasattr(m_optim, "conv2"))
data = torch.randn(4, 1, 4, 4)
m_res = m(data)
m_optim_res = m_optim(data)
torch.testing.assert_allclose(m_res, m_optim_res, rtol=1e-2, atol=1e-3)
# generic case
m, m_optim = _quant_script_and_optimize(Parent())
FileCheck().check_not("Conv2d = prim::GetAttr[name=\"conv1\"]") \
.check_count("__torch__.torch.classes.quantized.Conv2dPackedParamsBase = prim::Constant", 2, exactly=True) \
.run(m_optim.graph)
self.assertFalse(hasattr(m_optim, "conv1"))
self.assertFalse(hasattr(m_optim, "child"))
data = torch.randn(4, 1, 4, 4)
m_res = m(data)
m_optim_res = m_optim(data)
torch.testing.assert_allclose(m_res, m_optim_res, rtol=1e-2, atol=1e-3)
@unittest.skipUnless(HAS_TORCHVISION, "Needs torchvision")
def test_mobilenet_optimize_for_mobile(self):
m = torchvision.models.mobilenet_v3_small()
m = torch.jit.script(m)
m = optimize_for_mobile(m)
# run forward 3 times until segfault, see https://github.com/pytorch/pytorch/issues/52463
x = torch.zeros(1, 3, 56, 56)
self.assertEqual(m(x).numel(), 1000)
self.assertEqual(m(x).numel(), 1000)
self.assertEqual(m(x).numel(), 1000)
def test_clone_module_with_class(self):
class MyInnerTestModule(torch.nn.Module):
def __init__(self):
super(MyInnerTestModule, self).__init__()
self.pqr = torch.Tensor([10., 20., 30.])
def forward(self, inputs):
return inputs
@torch.jit.export
def dummy_method_not_cloned(self):
return 20
class MyTestModule(torch.nn.Module):
def __init__(self):
super(MyTestModule, self).__init__()
self.abc = 23
self.pqr = torch.Tensor([1., 2., 3.])
self.inner = MyInnerTestModule()
def forward(self, inputs):
x = self.dummy_method_cloned()
# The call to self.inner.dummy_method_not_cloned should not raise an error
y = self.inner.dummy_method_not_cloned()
# The call to self.inner.pqr should not raise an error
z = self.inner.pqr
return (inputs, x, y, z)
@torch.jit.export
def dummy_method_not_cloned2(self):
# The call to self.inner.dummy_method_not_cloned should not raise an error
y = self.inner.dummy_method_not_cloned()
# The call to self.inner.pqr should not raise an error
z = self.inner.pqr
return self.pqr, self.dummy_method_not_cloned(), y, z
@torch.jit.export
def dummy_method_not_cloned(self):
return None
@torch.jit.export
def dummy_method_cloned(self):
return None
@torch.jit.export
def dummy_method_ref_attr_pqr(self):
return self.pqr, self.inner.pqr
m = torch.jit.script(MyTestModule())
# Check that the methods exist on the original model.
self.assertEqual(hasattr(m, "dummy_method_not_cloned"), True)
self.assertEqual(hasattr(m, "dummy_method_cloned"), True)
self.assertEqual(hasattr(m, "dummy_method_not_cloned2"), True)
self.assertEqual(hasattr(m, "pqr"), True)
# Case-1: Successfully clone, ignoring 2 methods, keeping all attributes.
cloned = torch._C._hack_do_not_use_clone_module_with_class(
m._c,
["dummy_method_not_cloned", "dummy_method_not_cloned2"], # ignored_methods
[], # ignored_attributes
)
# Check that the ignored methods don't exist on the cloned model.
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned"), False)
self.assertEqual(hasattr(cloned, "dummy_method_cloned"), True)
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned2"), False)
self.assertEqual(hasattr(cloned, "pqr"), True)
# Check that the cloned class has a classname that starts with __torch__.
self.assertTrue(
cloned.qualified_name.startswith('__torch__.'),
("Expected the cloned module's name to start with the string "
"'__torch__.', but got: {0}").format(cloned.qualified_name),
)
# Case-2: Successfully clone the module, ignoring the attribute pqr, and the method that references it.
cloned = torch._C._hack_do_not_use_clone_module_with_class(
m._c,
["dummy_method_not_cloned", "dummy_method_not_cloned2", "dummy_method_ref_attr_pqr"],
["pqr"],
)
# Check that the ignored methods don't exist on the cloned model.
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned"), False)
self.assertEqual(hasattr(cloned, "dummy_method_cloned"), True)
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned2"), False)
self.assertEqual(hasattr(cloned, "dummy_method_ref_attr_pqr"), False)
self.assertEqual(hasattr(cloned, "pqr"), False)
# Case-3: The statement below will throw since dummy_method_cloned2 is preserved,
# and references dummy_method_not_cloned, which is not cloned.
with self.assertRaises(RuntimeError):
cloned = torch._C._hack_do_not_use_clone_module_with_class(m._c, ["dummy_method_not_cloned"], [])
# Case-4: The statement below will throw since dummy_method_ref_attr_pqr
# is preserved, and references "pqr", which is not cloned.
with self.assertRaises(RuntimeError):
cloned = torch._C._hack_do_not_use_clone_module_with_class(
m._c,
["dummy_method_not_cloned", "dummy_method_not_cloned2"],
["pqr"],
)
if __name__ == '__main__':
run_tests()