forked from chqwer2/Bilateral-Knee-Network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_utils_colab.py
460 lines (322 loc) · 14.4 KB
/
test_utils_colab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import gc
import collections
import copy
import time
import torch
import numpy as np
import pandas as pd
from collections import OrderedDict
from sklearn.metrics import roc_auc_score
from tqdm import tqdm
from utils.utils import moveTo
from utils.pytorchtools import EarlyStopping
from Data.test_utils.tta import tta_inference
import copy
from torch.nn.parallel import DataParallel, DistributedDataParallel
import os
import gc
import collections
import copy
import time
import torch
# import torch.nn as nn
# import torch.nn.functional as F
import numpy as np
# import seaborn as sns
# import matplotlib.pyplot as plt
import pandas as pd
from collections import OrderedDict
from sklearn.metrics import roc_auc_score
# from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from utils.utils import moveTo
from utils.pytorchtools import EarlyStopping
from Data.test_utils.tta import tta_inference
import copy
from torch.nn.parallel import DataParallel, DistributedDataParallel
tta_list = [0, 1, 5, 15, 11]
from functions import *
def fix_name(state_dict):
for name in list(state_dict.keys()):
if "regressor.4." in name:
state_dict[name.replace("regressor.4.", "regressor.3.")] = state_dict.pop(name)
return state_dict
def replace_key_name_for_feature_only(state_dict):
for name in list(state_dict.keys()):
if "stages." in name:
state_dict[name.replace("stages.", "stages_")] = state_dict.pop(name)
if "stem." in name:
state_dict[name.replace("stem.", "stem_")] = state_dict.pop(name)
if "head." in name:
state_dict.pop(name)
return state_dict
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
class kaggleTester():
def __init__(self, opt, cls_model, lmk_model,
checkpoints_dir="./checkpoints", get_layer_feature=False
) -> None:
self.opt = opt
self.model = cls_model['model']
self.get_layer_feature = get_layer_feature
self.checkpoints_dir = checkpoints_dir
def load(self, best_model_wts: str = None,
device="cpu"):
print("Load Model...")
if best_model_wts:
checkpoints = torch.load(best_model_wts,
map_location=torch.device(device))
if self.get_layer_feature:
self.model.load_state_dict(replace_key_name_for_feature_only(
fix_name(checkpoints))) # replace_key_name_for_feature_only(checkpoints))
else:
self.model.load_state_dict(fix_name(checkpoints))
self.model.eval()
self.model.to(device)
def test(self, test_data, score_funcs: dict,
is_bilateral=False, cam=False, tta=tta_list):
results = collections.defaultdict(list)
with torch.no_grad():
test_loss = _run_test_epoch(
opt=self.opt,
cls_models=[self.model],
lmk_models=[None] * 5,
data_loader=test_data,
results=results,
score_funcs=score_funcs,
is_bilateral=is_bilateral,
prefix="test", tta=tta, cam=cam)
results = pd.DataFrame.from_dict(results)
print(results)
from models.base_model import BaseModel
from models.base_model import *
import torch.nn as nn
import cv2
import numpy as np
class BasicXrayNet_test(BaseModel):
def __init__(self, model_name, pretrained=True, cross=False,
in_chans=1, drop_out=0.5, backbone_drop_out=0.1, num_classes=1,
embed=256, separate=True, get_layer_feature=False) -> None:
super(BasicXrayNet_test, self).__init__()
self.model_name = model_name
self.pretrained = pretrained
self.in_chans = in_chans
self.drop_out = drop_out
self.create_backbone(model_name, pretrained, in_chans, backbone_drop_out, get_layer_feature=get_layer_feature)
self.separate = separate
self.create_attention(self.backbone_embed, embed)
final_embed = 3 * embed
self.create_sl_attention(final_embed) # final
self.create_head(final_embed, self.backbone_embed, drop_out)
self.embed = final_embed
self.get_layer_feature = get_layer_feature
def forward(self, x, points, pointwise=False, return_features=False):
x_left_bk, x_right_bk = self.backbone_forward(x)
if not self.get_layer_feature:
x_left_bk = [x_left_bk]
x_right_bk = [x_right_bk]
x_left, x_right = self.res_attn_forward(x_left_bk[-1], x_right_bk[-1])
self.points = points
# Pooling Features, [B//2, embed]
out_left_ = self.global_pool(x_left)[:, :, 0, 0]
out_right_ = self.global_pool(x_right)[:, :, 0, 0]
# Squeezing to embed
out_left = self.squeezer(out_left_) # Out: embed #self.layernorm_left_after_pool(out_left))
out_right = self.squeezer(out_right_) # self.layernorm_right_after_pool(out_right))
# Calulate attention
self.channel_attn_forward(out_left, out_right) # In embed Out 3*embed
self.ln_forward() # In 3*embed Out 3*embed
self.self_attn_forward(self.out_left, self.out_right) # In 3*embed Out 1.5*embed
out_left = torch.cat([self.out_left, self.left_sl_score], dim=1) # , right_sl_score
out_right = torch.cat([self.out_right, self.right_sl_score], dim=1) # , left_sl_score
self.out_feature = torch.cat([out_left, out_right], dim=0) # -> B
# if not self.separate:
self.point_header_forward(out_left_, out_right_)
self.points = self.points.detach()
self.header_forward()
x_left_bk.append(x_left)
x_right_bk.append(x_right)
if return_features == True:
return (self.logit, self.grade, self.points), ((out_left_, out_right_), (x_left_bk, x_right_bk))
return self.logit, self.grade, self.points
from sklearn.metrics import roc_auc_score, average_precision_score
import albumentations as A
from albumentations.pytorch import ToTensorV2
from datasets import NewDataset, NewLoader, new_split_data, read_img, get_datasets
from models.models import BasicXrayNet, SBOnet, SEnet, PHYSBOnet, BilaterPHResnet50, MyModel2
import torch
def get_test_model(opt, get_layer_feature=False):
opt_model = opt["model"]
backbone_name = opt_model["backbone_name"]
model_name = opt_model["model_name"]
in_chans = opt_model["in_chans"]
drop_out = opt_model["drop_out"]
backbone_drop_out = opt_model["backbone_drop_out"]
embed_dim = opt_model["embed_dim"]
classes = opt_model["classes"]
model = BasicXrayNet_test(model_name=backbone_name,
pretrained=True, separate=opt["separate_model"],
drop_out=drop_out, backbone_drop_out=backbone_drop_out, in_chans=in_chans,
get_layer_feature=get_layer_feature)
model.cuda()
cls_model = {"model": model}
trainer = kaggleTester(opt=opt, cls_model=cls_model, lmk_model=None, get_layer_feature=get_layer_feature)
return trainer
def get_tester(opt, get_layer_feature=False):
seed_everything(seed=opt["seed"])
trainer = get_test_model(opt, get_layer_feature=get_layer_feature)
score_funcs = {'auc': roc_auc_score,
'ap': average_precision_score}
return trainer, score_funcs
import matplotlib.pyplot as plt
import cv2
def process_cam(img):
size_upsample = (224, 224)
img = img - np.min(img)
img = img / np.max(img)
img = np.uint8(255 * img)
return np.asarray(cv2.resize(img, size_upsample)) # 224, 224
def returnCAM(feature_conv, weight_softmax=None, class_idx=None):
# generate the class activation maps upsample to 256x256
output_cam = {}
for feature_layer in feature_conv:
bz, nc, h, w = feature_layer.shape # feature_layer: (32, 192, 56, 56)
feature_layer = feature_layer.cpu().numpy()
for idx in range(bz):
cam = feature_layer[idx]
cam = cam - np.min(cam)
cam_img = cam / np.max(cam)
cams = process_cam(cam_img[0]) # np.mean(cam_img, 0)
# cams = process_cam(cam_img[1])
cams2 = process_cam(cam_img[2])
cams3 = process_cam(cam_img[3])
cams4 = process_cam(cam_img[4])
cams5 = process_cam(cam_img[5])
cams6 = process_cam(cam_img[6])
cams7 = process_cam(cam_img[7])
cams8 = process_cam(cam_img[8])
cams9 = process_cam(cam_img[9])
cams1 = process_cam(np.mean(cam_img, 0))
if idx not in output_cam:
output_cam[idx] = [cams, cams1, cams2, cams3, cams4, cams5, cams6, cams7, cams8, cams9]
else:
output_cam[idx].extend([cams, cams1, cams2, cams3, cams4, cams5, cams6, cams7, cams8, cams9])
return output_cam
def show(left_title, right_title, left_image, right_image, left_cams, right_cams, fontsize=10):
fig = plt.figure(figsize=(12, 16))
grid = plt.GridSpec(4, 6, hspace=0.2, wspace=0.2)
# main_ax =
# y_hist = fig.add_subplot(grid[:-1, 0], xticklabels=[], sharey=main_ax)
# x_hist = fig.add_subplot(grid[-1, 1:], yticklabels=[], sharex=main_ax)
ax1 = fig.add_subplot(grid[:3, :3])
ax2 = fig.add_subplot(grid[:3, 3:6])
ax1.axis('off')
ax2.axis('off')
ax1.imshow(left_image)
ax1.set_title("left view: " + left_title, fontsize=fontsize) # , fontsize=fontsize
ax2.imshow(right_image)
# ax2.locator_params(nbins=3)
ax2.set_title("right view: " + right_title, fontsize=fontsize)
for i in range(3):
ax = fig.add_subplot(grid[2, i])
ax.axis('off')
ax.imshow(left_cams[i])
for i in range(3):
ax = fig.add_subplot(grid[2, 3 + i])
ax.axis('off')
ax.imshow(right_cams[i])
# fig.tight_layout()
plt.show()
from datasets.dataloaders import *
TRANSFORM_IMG = A.Compose([
A.Resize(310, 310, always_apply=True),
A.CenterCrop(224, 224, always_apply=True),
ToTensorV2(),
])
import albumentations as A
from albumentations.pytorch import ToTensorV2
def _run_test_epoch(opt, cls_models, lmk_models, data_loader,
results, score_funcs,
is_bilateral=False,
prefix="",
desc=None, tta=[0], cam=False
):
[model] = cls_models
model.eval()
running_loss = []
y_true = []
y_pred = []
tta_inferencer = tta_inference()
os.makedirs("cam_results", exist_ok=True)
total_n = 0
inputs_dict = data_loader
labels_left, labels_right = torch.split(inputs_dict["labels"], split_size_or_sections=1, dim=1)
labels = torch.cat([labels_left, labels_right], dim=0)
if not is_bilateral:
inputs_left, inputs_right = inputs_dict["images"]
inputs = torch.cat([inputs_left, inputs_right], dim=0)
else:
inputs = inputs_dict["images"]
if len(labels.shape) == 1:
labels = labels.view(labels.shape[0], -1) #
labels = labels.float()
device = 'cuda'
inputs = moveTo(inputs, device)
labels = moveTo(labels, device)
with torch.no_grad():
outputs_list = []
for i in tta:
inputs_tta = tta_inferencer(inputs, i)
if cam:
outputs, features = model(inputs_tta, None, return_features=cam)
# features : ((out_left_, out_right_), (x_left, x_right), (x_left_bk, x_right_bk))
Left_CAMs = returnCAM(features[1][0]) # x_left
Right_CAMs = returnCAM(features[1][1]) # x_rightX
# n in B
for n, m in enumerate(Left_CAMs.keys()): # Patients
left_origin = np.repeat(np.expand_dims(inputs_tta[0][n, 0].cpu().numpy(), -1), 3, axis=2)
right_origin = np.repeat(np.expand_dims(inputs_tta[1][n, 0].cpu().numpy(), -1), 3, axis=2)
left_label = labels[n][0].cpu().numpy()
right_label = labels[inputs[0].shape[0] + n][0].cpu().numpy()
pred_logit, pred_grade = outputs[0], outputs[1] # logit, self.grade, self.point
left_pred_logit = pred_logit[n][0].cpu().numpy()
left_pred_grade = pred_grade[n][0].cpu().numpy()
right_pred_logit = pred_logit[inputs[0].shape[0] + n][0].cpu().numpy()
right_pred_grade = pred_grade[inputs[0].shape[0] + n][0].cpu().numpy()
left_title = f'label{left_label}_pred{np.round(sigmoid(left_pred_logit), 3)}'
right_title = f'label{right_label}_pred{np.round(sigmoid(right_pred_logit), 3)}'
left_results, right_results = [], []
for camid, _ in enumerate(Left_CAMs[n]):
h1 = cv2.applyColorMap(Left_CAMs[n][camid], cv2.COLORMAP_JET)
left_results.append(np.uint8(h1 * 0.5) + np.uint8(255 * 0.5 * left_origin))
for camid, _ in enumerate(Right_CAMs[n]):
h1 = cv2.applyColorMap(Right_CAMs[n][camid], cv2.COLORMAP_JET)
right_results.append(np.uint8(h1 * 0.5) + np.uint8(255 * 0.5 * right_origin))
print("right_results:", len(right_results))
Choose = np.array([21, 32, 47])
left = np.asarray(left_results)[Choose]
right = np.asarray(right_results)[Choose]
show(left_title, right_title, left_origin, right_origin,
left, right)
outputs_list.append(outputs[0].detach().cpu().numpy())
outputs = np.mean(outputs_list, 0)
# loss = loss_func([outputs, None], grades, labels, None)
# running_loss.append(loss.item())
if len(score_funcs) > 0 and isinstance(labels, torch.Tensor):
labels = labels.detach().cpu().numpy()
# Convert the outputs to the probability
y_hat = sigmoid(outputs)
y_true.extend(labels.tolist())
y_pred.extend(y_hat)
# End training epoch
y_pred = np.asarray(y_pred)
y_true = np.asarray(y_true)
results[f"{prefix} loss"].append(np.mean(running_loss))
for name, score_func in score_funcs.items():
try:
results[f"{prefix} {name}"].append(score_func(y_true.flatten(), y_pred.flatten()))
except:
results[f"{prefix} {name}"].append(float("NaN"))
gc.collect()