forked from mllam/neural-lam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_mesh.py
500 lines (410 loc) · 15.2 KB
/
create_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Standard library
import os
from argparse import ArgumentParser
# Third-party
import matplotlib
import matplotlib.pyplot as plt
import networkx
import numpy as np
import scipy.spatial
import torch
import torch_geometric as pyg
from torch_geometric.utils.convert import from_networkx
# First-party
from neural_lam import config
def plot_graph(graph, title=None):
fig, axis = plt.subplots(figsize=(8, 8), dpi=200) # W,H
edge_index = graph.edge_index
pos = graph.pos
# Fix for re-indexed edge indices only containing mesh nodes at
# higher levels in hierarchy
edge_index = edge_index - edge_index.min()
if pyg.utils.is_undirected(edge_index):
# Keep only 1 direction of edge_index
edge_index = edge_index[:, edge_index[0] < edge_index[1]] # (2, M/2)
# TODO: indicate direction of directed edges
# Move all to cpu and numpy, compute (in)-degrees
degrees = (
pyg.utils.degree(edge_index[1], num_nodes=pos.shape[0]).cpu().numpy()
)
edge_index = edge_index.cpu().numpy()
pos = pos.cpu().numpy()
# Plot edges
from_pos = pos[edge_index[0]] # (M/2, 2)
to_pos = pos[edge_index[1]] # (M/2, 2)
edge_lines = np.stack((from_pos, to_pos), axis=1)
axis.add_collection(
matplotlib.collections.LineCollection(
edge_lines, lw=0.4, colors="black", zorder=1
)
)
# Plot nodes
node_scatter = axis.scatter(
pos[:, 0],
pos[:, 1],
c=degrees,
s=3,
marker="o",
zorder=2,
cmap="viridis",
clim=None,
)
plt.colorbar(node_scatter, aspect=50)
if title is not None:
axis.set_title(title)
return fig, axis
def sort_nodes_internally(nx_graph):
# For some reason the networkx .nodes() return list can not be sorted,
# but this is the ordering used by pyg when converting.
# This function fixes this.
H = networkx.DiGraph()
H.add_nodes_from(sorted(nx_graph.nodes(data=True)))
H.add_edges_from(nx_graph.edges(data=True))
return H
def save_edges(graph, name, base_path):
torch.save(
graph.edge_index, os.path.join(base_path, f"{name}_edge_index.pt")
)
edge_features = torch.cat((graph.len.unsqueeze(1), graph.vdiff), dim=1).to(
torch.float32
) # Save as float32
torch.save(edge_features, os.path.join(base_path, f"{name}_features.pt"))
def save_edges_list(graphs, name, base_path):
torch.save(
[graph.edge_index for graph in graphs],
os.path.join(base_path, f"{name}_edge_index.pt"),
)
edge_features = [
torch.cat((graph.len.unsqueeze(1), graph.vdiff), dim=1).to(
torch.float32
)
for graph in graphs
] # Save as float32
torch.save(edge_features, os.path.join(base_path, f"{name}_features.pt"))
def from_networkx_with_start_index(nx_graph, start_index):
pyg_graph = from_networkx(nx_graph)
pyg_graph.edge_index += start_index
return pyg_graph
def mk_2d_graph(xy, nx, ny):
xm, xM = np.amin(xy[0][0, :]), np.amax(xy[0][0, :])
ym, yM = np.amin(xy[1][:, 0]), np.amax(xy[1][:, 0])
# avoid nodes on border
dx = (xM - xm) / nx
dy = (yM - ym) / ny
lx = np.linspace(xm + dx / 2, xM - dx / 2, nx)
ly = np.linspace(ym + dy / 2, yM - dy / 2, ny)
mg = np.meshgrid(lx, ly)
g = networkx.grid_2d_graph(len(ly), len(lx))
for node in g.nodes:
g.nodes[node]["pos"] = np.array([mg[0][node], mg[1][node]])
# add diagonal edges
g.add_edges_from(
[((x, y), (x + 1, y + 1)) for x in range(nx - 1) for y in range(ny - 1)]
+ [
((x + 1, y), (x, y + 1))
for x in range(nx - 1)
for y in range(ny - 1)
]
)
# turn into directed graph
dg = networkx.DiGraph(g)
for u, v in g.edges():
d = np.sqrt(np.sum((g.nodes[u]["pos"] - g.nodes[v]["pos"]) ** 2))
dg.edges[u, v]["len"] = d
dg.edges[u, v]["vdiff"] = g.nodes[u]["pos"] - g.nodes[v]["pos"]
dg.add_edge(v, u)
dg.edges[v, u]["len"] = d
dg.edges[v, u]["vdiff"] = g.nodes[v]["pos"] - g.nodes[u]["pos"]
return dg
def prepend_node_index(graph, new_index):
# Relabel node indices in graph, insert (graph_level, i, j)
ijk = [tuple((new_index,) + x) for x in graph.nodes]
to_mapping = dict(zip(graph.nodes, ijk))
return networkx.relabel_nodes(graph, to_mapping, copy=True)
def main(input_args=None):
parser = ArgumentParser(description="Graph generation arguments")
parser.add_argument(
"--data_config",
type=str,
default="neural_lam/data_config.yaml",
help="Path to data config file (default: neural_lam/data_config.yaml)",
)
parser.add_argument(
"--graph",
type=str,
default="multiscale",
help="Name to save graph as (default: multiscale)",
)
parser.add_argument(
"--plot",
type=int,
default=0,
help="If graphs should be plotted during generation "
"(default: 0 (false))",
)
parser.add_argument(
"--levels",
type=int,
help="Limit multi-scale mesh to given number of levels, "
"from bottom up (default: None (no limit))",
)
parser.add_argument(
"--hierarchical",
type=int,
default=0,
help="Generate hierarchical mesh graph (default: 0, no)",
)
args = parser.parse_args(input_args)
# Load grid positions
config_loader = config.Config.from_file(args.data_config)
static_dir_path = os.path.join("data", config_loader.dataset.name, "static")
graph_dir_path = os.path.join("graphs", args.graph)
os.makedirs(graph_dir_path, exist_ok=True)
xy = np.load(os.path.join(static_dir_path, "nwp_xy.npy"))
grid_xy = torch.tensor(xy)
pos_max = torch.max(torch.abs(grid_xy))
#
# Mesh
#
# graph geometry
nx = 3 # number of children = nx**2
nlev = int(np.log(max(xy.shape)) / np.log(nx))
nleaf = nx**nlev # leaves at the bottom = nleaf**2
mesh_levels = nlev - 1
if args.levels:
# Limit the levels in mesh graph
mesh_levels = min(mesh_levels, args.levels)
print(f"nlev: {nlev}, nleaf: {nleaf}, mesh_levels: {mesh_levels}")
# multi resolution tree levels
G = []
for lev in range(1, mesh_levels + 1):
n = int(nleaf / (nx**lev))
g = mk_2d_graph(xy, n, n)
if args.plot:
plot_graph(from_networkx(g), title=f"Mesh graph, level {lev}")
plt.show()
G.append(g)
if args.hierarchical:
# Relabel nodes of each level with level index first
G = [
prepend_node_index(graph, level_i)
for level_i, graph in enumerate(G)
]
num_nodes_level = np.array([len(g_level.nodes) for g_level in G])
# First node index in each level in the hierarchical graph
first_index_level = np.concatenate(
(np.zeros(1, dtype=int), np.cumsum(num_nodes_level[:-1]))
)
# Create inter-level mesh edges
up_graphs = []
down_graphs = []
for from_level, to_level, G_from, G_to, start_index in zip(
range(1, mesh_levels),
range(0, mesh_levels - 1),
G[1:],
G[:-1],
first_index_level[: mesh_levels - 1],
):
# start out from graph at from level
G_down = G_from.copy()
G_down.clear_edges()
G_down = networkx.DiGraph(G_down)
# Add nodes of to level
G_down.add_nodes_from(G_to.nodes(data=True))
# build kd tree for mesh point pos
# order in vm should be same as in vm_xy
v_to_list = list(G_to.nodes)
v_from_list = list(G_from.nodes)
v_from_xy = np.array([xy for _, xy in G_from.nodes.data("pos")])
kdt_m = scipy.spatial.KDTree(v_from_xy)
# add edges from mesh to grid
for v in v_to_list:
# find 1(?) nearest neighbours (index to vm_xy)
neigh_idx = kdt_m.query(G_down.nodes[v]["pos"], 1)[1]
u = v_from_list[neigh_idx]
# add edge from mesh to grid
G_down.add_edge(u, v)
d = np.sqrt(
np.sum(
(G_down.nodes[u]["pos"] - G_down.nodes[v]["pos"]) ** 2
)
)
G_down.edges[u, v]["len"] = d
G_down.edges[u, v]["vdiff"] = (
G_down.nodes[u]["pos"] - G_down.nodes[v]["pos"]
)
# relabel nodes to integers (sorted)
G_down_int = networkx.convert_node_labels_to_integers(
G_down, first_label=start_index, ordering="sorted"
) # Issue with sorting here
G_down_int = sort_nodes_internally(G_down_int)
pyg_down = from_networkx_with_start_index(G_down_int, start_index)
# Create up graph, invert downwards edges
up_edges = torch.stack(
(pyg_down.edge_index[1], pyg_down.edge_index[0]), dim=0
)
pyg_up = pyg_down.clone()
pyg_up.edge_index = up_edges
up_graphs.append(pyg_up)
down_graphs.append(pyg_down)
if args.plot:
plot_graph(
pyg_down, title=f"Down graph, {from_level} -> {to_level}"
)
plt.show()
plot_graph(
pyg_down, title=f"Up graph, {to_level} -> {from_level}"
)
plt.show()
# Save up and down edges
save_edges_list(up_graphs, "mesh_up", graph_dir_path)
save_edges_list(down_graphs, "mesh_down", graph_dir_path)
# Extract intra-level edges for m2m
m2m_graphs = [
from_networkx_with_start_index(
networkx.convert_node_labels_to_integers(
level_graph, first_label=start_index, ordering="sorted"
),
start_index,
)
for level_graph, start_index in zip(G, first_index_level)
]
mesh_pos = [graph.pos.to(torch.float32) for graph in m2m_graphs]
# For use in g2m and m2g
G_bottom_mesh = G[0]
joint_mesh_graph = networkx.union_all([graph for graph in G])
all_mesh_nodes = joint_mesh_graph.nodes(data=True)
else:
# combine all levels to one graph
G_tot = G[0]
for lev in range(1, len(G)):
nodes = list(G[lev - 1].nodes)
n = int(np.sqrt(len(nodes)))
ij = (
np.array(nodes)
.reshape((n, n, 2))[1::nx, 1::nx, :]
.reshape(int(n / nx) ** 2, 2)
)
ij = [tuple(x) for x in ij]
G[lev] = networkx.relabel_nodes(G[lev], dict(zip(G[lev].nodes, ij)))
G_tot = networkx.compose(G_tot, G[lev])
# Relabel mesh nodes to start with 0
G_tot = prepend_node_index(G_tot, 0)
# relabel nodes to integers (sorted)
G_int = networkx.convert_node_labels_to_integers(
G_tot, first_label=0, ordering="sorted"
)
# Graph to use in g2m and m2g
G_bottom_mesh = G_tot
all_mesh_nodes = G_tot.nodes(data=True)
# export the nx graph to PyTorch geometric
pyg_m2m = from_networkx(G_int)
m2m_graphs = [pyg_m2m]
mesh_pos = [pyg_m2m.pos.to(torch.float32)]
if args.plot:
plot_graph(pyg_m2m, title="Mesh-to-mesh")
plt.show()
# Save m2m edges
save_edges_list(m2m_graphs, "m2m", graph_dir_path)
# Divide mesh node pos by max coordinate of grid cell
mesh_pos = [pos / pos_max for pos in mesh_pos]
# Save mesh positions
torch.save(
mesh_pos, os.path.join(graph_dir_path, "mesh_features.pt")
) # mesh pos, in float32
#
# Grid2Mesh
#
# radius within which grid nodes are associated with a mesh node
# (in terms of mesh distance)
DM_SCALE = 0.67
# mesh nodes on lowest level
vm = G_bottom_mesh.nodes
vm_xy = np.array([xy for _, xy in vm.data("pos")])
# distance between mesh nodes
dm = np.sqrt(
np.sum((vm.data("pos")[(0, 1, 0)] - vm.data("pos")[(0, 0, 0)]) ** 2)
)
# grid nodes
Ny, Nx = xy.shape[1:]
G_grid = networkx.grid_2d_graph(Ny, Nx)
G_grid.clear_edges()
# vg features (only pos introduced here)
for node in G_grid.nodes:
# pos is in feature but here explicit for convenience
G_grid.nodes[node]["pos"] = np.array([xy[0][node], xy[1][node]])
# add 1000 to node key to separate grid nodes (1000,i,j) from mesh nodes
# (i,j) and impose sorting order such that vm are the first nodes
G_grid = prepend_node_index(G_grid, 1000)
# build kd tree for grid point pos
# order in vg_list should be same as in vg_xy
vg_list = list(G_grid.nodes)
vg_xy = np.array([[xy[0][node[1:]], xy[1][node[1:]]] for node in vg_list])
kdt_g = scipy.spatial.KDTree(vg_xy)
# now add (all) mesh nodes, include features (pos)
G_grid.add_nodes_from(all_mesh_nodes)
# Re-create graph with sorted node indices
# Need to do sorting of nodes this way for indices to map correctly to pyg
G_g2m = networkx.Graph()
G_g2m.add_nodes_from(sorted(G_grid.nodes(data=True)))
# turn into directed graph
G_g2m = networkx.DiGraph(G_g2m)
# add edges
for v in vm:
# find neighbours (index to vg_xy)
neigh_idxs = kdt_g.query_ball_point(vm[v]["pos"], dm * DM_SCALE)
for i in neigh_idxs:
u = vg_list[i]
# add edge from grid to mesh
G_g2m.add_edge(u, v)
d = np.sqrt(
np.sum((G_g2m.nodes[u]["pos"] - G_g2m.nodes[v]["pos"]) ** 2)
)
G_g2m.edges[u, v]["len"] = d
G_g2m.edges[u, v]["vdiff"] = (
G_g2m.nodes[u]["pos"] - G_g2m.nodes[v]["pos"]
)
pyg_g2m = from_networkx(G_g2m)
if args.plot:
plot_graph(pyg_g2m, title="Grid-to-mesh")
plt.show()
#
# Mesh2Grid
#
# start out from Grid2Mesh and then replace edges
G_m2g = G_g2m.copy()
G_m2g.clear_edges()
# build kd tree for mesh point pos
# order in vm should be same as in vm_xy
vm_list = list(vm)
kdt_m = scipy.spatial.KDTree(vm_xy)
# add edges from mesh to grid
for v in vg_list:
# find 4 nearest neighbours (index to vm_xy)
neigh_idxs = kdt_m.query(G_m2g.nodes[v]["pos"], 4)[1]
for i in neigh_idxs:
u = vm_list[i]
# add edge from mesh to grid
G_m2g.add_edge(u, v)
d = np.sqrt(
np.sum((G_m2g.nodes[u]["pos"] - G_m2g.nodes[v]["pos"]) ** 2)
)
G_m2g.edges[u, v]["len"] = d
G_m2g.edges[u, v]["vdiff"] = (
G_m2g.nodes[u]["pos"] - G_m2g.nodes[v]["pos"]
)
# relabel nodes to integers (sorted)
G_m2g_int = networkx.convert_node_labels_to_integers(
G_m2g, first_label=0, ordering="sorted"
)
pyg_m2g = from_networkx(G_m2g_int)
if args.plot:
plot_graph(pyg_m2g, title="Mesh-to-grid")
plt.show()
# Save g2m and m2g everything
# g2m
save_edges(pyg_g2m, "g2m", graph_dir_path)
# m2g
save_edges(pyg_m2g, "m2g", graph_dir_path)
if __name__ == "__main__":
main()