Skip to content

Latest commit

 

History

History
557 lines (413 loc) · 20.4 KB

README.md

File metadata and controls

557 lines (413 loc) · 20.4 KB

Introduction

Here we provide an overview of the preprocessing and analysis pipeline for the fMRI modality, as well as a description and instructions to use the provided code.

Authors: Yamil Vidal, David Richter, Aya Khalaf

The code for different preprocessing steps and analyses are provided in different folders:

  • bidscoin: primarily contains the custom yaml map mapping the raw dicom data to BIDS converted nifti data on the project (MPI) HPC. For more information on bidscoin see: bidscoin.readthedocs.io
  • data_rejection: scripts to assess data quality and flag datasets/participants to be rejected from analysis.
  • dicom2bids: script that runs the dicom to BIDS converter.
  • glm: scripts to (1) extract confound regressors from fmriprep and (2) run/submit 1st (run) level GLMs, as well as 2nd (subject) and 3rd (group) level GLMs using FSL FEAT. Also contains subfolder with fsf templates used by FEAT.
  • logfiles_and_checks: scripts to (1) create events.tsv files from experiment log files per experiment (exp1, exp2, evcLoc). The resulting events.tsv + assocaited .json sidecar are BIDS compliant. Also performs various sanity checks on MRI data and logs. Another set of scripts (2) creates regressor event txt files as required by MRI analysis software (e.g. FSL FEAT; 3 column format).
  • masks: script to create (anatomical) ROI masks.
  • putative_ncc: scripts to run putative NCC analysis (assumes that FSL FEAT outputs already exist; see scripts in ./glm folder).
  • decoding: scripts to (1) obtain single trial estimates, (2) run subject level and group level searchlight and ROI decoding analyses, (3) plot group level searchlight accuracy maps on axial brain slices and brain surfaces, and (4) plot group level ROI accuracies on brain surfaces.
  • gppi: scripts to (1) convert 4D nifiti files to 3D nifti files, (2) smooth 3D nifti files, (3) run subject level GLMs, (4) run subject level and group level gppi analyses, and (5) plot group level gppi stats maps on axial brain slices and brain surfaces.

Installation and running instructions

  1. Clone this repository to the computer where you intend to run the analysis.
  2. Create a new conda environment by running the following (requires Anaconda):
conda env create --file=requirements_cogitate_fmri.yaml
  1. What the command above did was create the env in your user directory. You should then activate the environment to start working with it. To do so, execute the following command:
module purge; module load Anaconda3/2020.11; source /hpc/shared/EasyBuild/apps/Anaconda3/2020.11/bin/activate; conda activate /hpc/users/$USER/.conda/envs/cogitate_fmri

The environments are tailored for Linux and the HPC, so some things might break a little if you use windows or Mac (not tested very thoroughly). Other required software includes can be found in the analysis instructions below.

  1. Download either the sample data to run a demo (see below), or the full dataset available in YYY.
  2. Edit the scripts so that the bids paths point to where you have placed the data. Some scripts require functions defined in ./cogitate-msp1/coglib/fmri/helper_functions_MRI.py.
  3. Follow the instructions bellow to run the analyses. Note that several analyses depend on the output of previous analyses and therefore there should be run in the specified order.

Sample data and demo

Sample data, used to run a demo of the analysis pipeline, can be found here

fMRI data from four subjects (two per data collection site) are provided. We provide bids converted data (in ./bids/) as well as preprocessed data (in ./bids/derivatives/fmriprep/ and ./bids/derivatives/freesurfer/). We also provide data quality measures that can be found in ./bids/derivatives/mriqc/.

In order to run the demo, besides editing the scripts so that the bids paths point to the downloaded data. A list of subjects for the demo (participants_fMRI_QC_included_demo_sesV1.tsv) can be found in ./bids/. If a script uses subjects = get_subject_list(bids_dir,subject_list_type) to get the list of subjects to be used, please set subject_list_type = 'demo'. If instead a script loads the subjects' list directly, please point the script to the abovementioned list.

fMRI data pipeline overview

Preprocessing

As the shared data is already converted to bids, steps 0 to 3 are not needed. These steps are provided to facilitate the application of our pipeline to other datasets.

  1. Setup dicom to BIDS converter (once); BIDSMAPPER
  2. Conversion of MRI DICOM data to BIDS; BIDSCOINER
  3. Creation of events.tsv files; PYTHON CODE
  4. BIDS validation; BIDSVALIDATOR

Start here to test the code with the demo dataset, or to perform a full replication, including preprocessing.

  1. MRI data quality checks; MRIQC
  2. Data rejection; PYTHON CODE
  3. MRI preprocessing & visual data/preprocessing quality checks; FMRIPREP

Analysis

Start here to test the code with the demo dataset, or to perform a full replication, starting from already preprocessed data.

  1. Create (anatomical) ROI masks
  2. Create regressor event txt files (3 column format)
  3. Run 1st, 2nd and 3rd level GLMs
  4. Create Decoding ROIs
  5. Create seeds for GPPI analysis
  6. Run Putative NCC analysis
  7. Putative NCC analysis: Generate data for tables
  8. Putative NCC analysis: Generate figures
  9. Decoding Analyses
  10. GPPI Analyses

fMRI data pipeline details

  1. BIDS COIN SETUP (https://github.com/Donders-Institute/bidscoin) Setup of data processing: Run only once during setup (requires sample dataset).
    module purge
    module load bidscoin/3.6.3
    bidsmapper ./raw ./bids

Run time ~= < 1 minute

  1. DICOM TO BIDS Converts DICOM to BIDS compliant niftis.
    module purge
    module load bidscoin/3.6.3
    cd ./cogitate-msp1/coglib/fmri/dicom_to_bids
    python 01_convert_dicom_to_bids.py

Run time ~= 5 minutes per subject

  1. Create events.tsv files & perform MRI log file checks. Create events.tsv files per run from experiment native log files
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    cd ./cogitate-msp1/coglib/fmri/logfiles_and_checks
    python 01_exp1_create_events_tsv_file.py

Run time ~= < 1 minute

  1. BIDS Validator (https://neuroimaging-core-docs.readthedocs.io) Validate BIDS compliance of dataset
    module purge
    module load nodejs/12.16.1-GCCcore-7.3.0 
    cd ./    # this should be the directory that contains the bids directory
    bids-validator bids

Run time ~= < 1 minute

  1. a) MRI QC (https://mriqc.readthedocs.io; https://github.com/marcelzwiers/mriqc_sub) Run MRI QC for visual inspection of (f)MRI data quality. Perform visual inspection of each runs data (see ./bids/derivatives/mriqc).
    module purge
    module load mriqc
    cd ./    # this should be the directory that contains the bids directory 
    mriqc_sub.py ./bids -t 48 -w ./scratch/mriqc_workdir -o ./bids/derivatives

Run time ~= 6 hours per subject (subjects can be run in parallel)

  1. b) MRI QC group level Run MRI QC at the group level
    module purge
    module load mriqc
    cd ./    # this should be the directory that contains the bids directory
    mriqc_group.py bids

Run time ~= < 1 minute

  1. Data rejection using MRI QC IQMs Extract IQMs of interest from MRI QC and reject runs/participants from further analysis (run only AFTER all data has been processed with MRIQC)
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    cd ./cogitate-msp1/coglib/fmri/qc
    python 01_analyze_MRIQC_IQMs.py

Run time ~= < 1 minute

  1. fMRIprep. (https://fmriprep.org; https://github.com/marcelzwiers/fmriprep_sub) Preprocess (f)MRI data. Perform visual inspection of each runs data (see ./bids/derivatives/fmriprep)
    module purge
    module load fmriprep/20.2.3
    cd ./    # this should be the directory that contains the bids directory
    fmriprep_sub.py ./bids -w ./scratch/fmriprep_workdir --time 80 --mem_mb 30000 -n 6 -a " --ignore sbref slicetiming --output-spaces T1w MNI152NLin2009cAsym"

Run time ~= 2 days per subject (subjects can be run in parallel)

  1. a) Create anatomical ROI masks Besides running this code for the desired participants, it should be also run for the MNI152NLin2009cAsym standard brain (for group lvl analyses). For this we used the precomputed FreeSurfer output that can be found here: https://figshare.com/articles/dataset/FreeSurfer_reconstruction_of_the_MNI152_ICBM2009c_asymmetrical_non-linear_atlas/4223811
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    module load FreeSurfer
    module load FSL
    cd ./cogitate-msp1/coglib/fmri/masks
    python 01_create_ROI_masks.py

Run time ~= 40 minutes per subject

  1. b) Resample anatomical ROI masks to target space The standard space used is MNI152NLin2009cAsym
    module purge
    module load ANTs
    cd ./cogitate-msp1/coglib/fmri/masks
    python 02_resample_ROI_masks_to_target_space.py

Run time ~= 2 minutes per subject

  1. c) Combine ROIs to create theory specific ROIs This also creates FFA and LOC masks used for the creation of GPPI seeds
    module purge
    cd ./cogitate-msp1/coglib/fmri/masks
    python 03_create_theory_ROI_masks.py

Run time ~= < 1 minute per subject

  1. d) Resample group level anatomical ROI masks to target space The standard space used is MNI152NLin2009cAsym
    cd ./cogitate-msp1/coglib/fmri/masks
    bash 04_resample_MNI152_ROIs.sh

Run time ~= 2 minutes

  1. e) Combine ROIs to create theory specific ROIs (group level)
    cd ./cogitate-msp1/coglib/fmri/masks
    python 05_create_theory_ROI_masks_MNI152.py

Run time ~= < 1 minute

  1. Create regressor event txt file Create regressor event txt files; 3 column format; 1 per regressors (FSL FEAT compliant) from information in events.tsv files per run.
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    cd ./cogitate-msp1/coglib/fmri/logfiles_and_checks
    python 02_exp1_create_regressor_txt_files.py

Run time ~= < 1 minute

  1. Run 1st, 2nd and 3rd level GLMs using FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) Create confound regressor files to be used in 1st level GLMs. Then run first and second level GLMs using FSL FEAT; adjust analysis level in python script. Perform visual inspection of each run's output data (see ./bids/derivatives/fslFeat).
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    module load Spyder/4.1.5-foss-2019a-Python-3.7.2
    module load FSL
    cd ./cogitate-msp1/coglib/fmri/glm
    python 01_create_confound_regressor_ev_file.py
    python 02_run_fsf_feat_analyses.py    # Do for each GLM lvl

Run time 1st level ~= 2 hours per subject Run time 2nd level ~= 2:30 hours per subject Run time 3rd level ~= 2 hours

  1. Create Decoding ROIs Requires anatomical ROIs (step 7) and GLMs (step 9).
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    cd ./cogitate-msp1/coglib/fmri/decoding_rois
    python 01_create_decoding_rois_all_runs.py
    python 02_create_decoding_rois_leave_one_run_out.py

Run time ~= 3 minutes per subject

  1. Create seeds for GPPI analysis Requires anatomical ROIs (step 7) and GLMs (step 9).
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    cd ./cogitate-msp1/coglib/fmri/seeds_for_gppi
    python 01_create_gppi_seeds.py

Run time ~= < 1 minute per subject

  1. Run Putative NCC analysis Run putative NCC analysis on FSL Feat outputs.
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    module load FSL
    cd ./cogitate-msp1/coglib/fmri/putative_ncc

    python 01_PutativeNCC_analysis_on_FEAT_copes.py                  # Group lvl univariate
    python 02_putative_ncc_create_C_not_A_or_B_maps.py               # Exclude voxels responsive to task goals and task relevance (Group level univariate)

# Run time ~= 10 minutes per subject

    python 03_putative_ncc_analysis_on_FEAT_copes_subject_level.py   # Subject lvl univariate
    python 04_putative_ncc_subject_level_create_C_not_A_or_B_maps.py # Exclude voxels responsive to task goals and task relevance (Subject lvl univariate)

# Run time ~= 10 minutes per subject

    python 05_multivariate_putative_ncc_analysis.py                  # Group lvl multivariate
    python 06_multivariate_putative_ncc_create_C_not_A_or_B_maps.py  # Exclude voxels responsive to task goals and task relevance (Group level multivariate)

# Run time ~= < 1 minute per subject

    python 07_putative_ncc_merge_phases.py                           # Combine optimization and replication phases, for plotting purposes

# Run time ~= < 1 minute

  1. Putative NCC analysis: Generate data for tables Count detected voxels in each anatomical ROI and save data to csv files (used to produce tables). Requires anatomical masks (7) and the results of putative NCC analyses (12).
    module purge
    module load Python/3.8.6-GCCcore-10.2.0
    cd ./cogitate-msp1/coglib/fmri/putative_ncc_tables
    python 01_putative_ncc_group_level_tables.py
    python 02_putative_ncc_subject_level_tables.py
    python 03_multivariate_putative_ncc_group_level_tables.py

Run time ~= 3 minutes per subject

  1. Putative NCC analysis: Generate figures Requires Slice Display (https://github.com/bramzandbelt/slice_display), and MATLAB (https://www.mathworks.com/products/matlab.html). The following scripts should be run from within MATLAB. Please adjust the paths of the scripts to point to the required data (found in ./bids/derivatives/putative_ncc/).
    cd ./cogitate-msp1/coglib/fmri/putative_ncc_plotting
    Putative_NCC_01_univariate.m    # Univariate pNCC, main figure (5) and individual stimulus categories
    Putative_NCC_02_AB.m            # Areas responsive to task goals and task relevance
    Putative_NCC_03_multivariate.m  # Multivariate pNCC
    Putative_NCC_04_z_maps.m        # Individual z maps for each stimulus category and condition (relevant and irrelevant)

Run time ~= < 1 minute

  1. Decoding Analysis

a) Resolve compatibility issues between fmriprep and NiBetaseries that will be used to obtain single trial estimates

Rename confounds tsv files generated by fmriprep for compatibility with NiBetaseries

    cd ./cogitate-msp1/coglib/fmri/decoding
    rename_confounds_tsv_files.m      

Add the following information under the "BIDSVersion" field in the dataset_description.json located in the fmriprep dir.

    "PipelineDescription": {
        "Name": "fMRIPrep",
        "Version": "20.2.3",
        "Container": {
            "Type": "docker",
            "Tag": "poldracklab/fmriprep:20.2.3"
            }
 	},

b) Obtain single trial estimates which are required for all the rest of the decoding analyses

Run time ~= 240 minutes per subject

Requires NiBetaSeries (https://nibetaseries.readthedocs.io/en/stable/)

    module load nibetaseries/0.6.0
    singularity run --cleanenv -B /mnt/beegfs:/mnt/beegfs -B /hpc:/hpc ${NIBETASERIES_SIMG} nibs -c trans_x trans_x_derivative1  trans_x_power2 trans_x_derivative1_power2 trans_y trans_y_derivative1 trans_y_power2 trans_y_derivative1_power2 trans_z trans_z_derivative1 trans_z_power2 trans_z_derivative1_power2 rot_x rot_x_derivative1 rot_x_power2 rot_x_derivative1_power2 rot_y rot_y_derivative1 rot_y_power2 rot_y_derivative1_power2 rot_z rot_z_derivative1 rot_z_power2 rot_z_derivative1_power2 csf white_matter --participant-label PARTICIPANT_LABEL  --session-label V1 --nthreads 32  --normalize-betas --estimator lss --hrf-model 'spm'  -w ./bids/derivatives/betaseries ./bids fmriprep ./bids/derivatives/ participant

c) Run searchlight decoding

Run time ~= 180 minutes per subject

Requires mansfield (https://github.com/mekman/mansfield)

Subject level category decoding

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python searchlight_category_decoding_subject_level.py  

Subject level orientation decoding

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python searchlight_orientation_decoding_subject_level.py

Subject level stim vs baseline decoding to be used as input for multivariate putative NCC analysis

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python searchlight_stim_baseline_decoding_subject_level.py

Group level analysis

Run time ~= 60 minutes

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python searchlight_decoding_group_analysis.py                            # Plots group level accuracy maps on axial brain slices 

d) Obtain searchlight decoding tables

Run time ~= 1 minutes

Searchlight tables based on the group level searchlight accuracy maps

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python searchlight_group_level_tables.py                         

e) Run ROI decoding

Run time ~= 10 minutes per subject

Subject level category decoding

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python roi_category_decoding_subject_level.py  

Subject level orientation decoding

    module purge
    cd ./cogitate-msp1/coglib/fmri/code/decoding
    python roi_orientation_decoding_subject_level.py 

Group level analysis

Run time ~= 10 minutes

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python roi_decoding_group_analysis.py                           

f) Test IIT decoding predictions

Run time ~= 10 minutes per subject

Subject level category decoding evaluating accuracies obtained with IIT ROIs only vs accuracies obtained with IIT+PFC ROIs

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python roi_category_decoding_testing_IIT_predictions_combined_features.py 

Group level analysis to determine if the difference between IIT+PFC accuracies and IIT accuracies is statistically significant

Run time ~= 10 minutes

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python roi_decoding_group_analysis_IIT_predictions.py   

g) Plot searchlight and ROI decoding results on a brain surface

Run time ~= 5 minutes per decoding problem

Plot group level searchlight decoding accuracy maps on a brain surface

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python MSP1_searchlight_decoding_plots.py 

Plot group level ROI accuracies on a brain surface

    module purge
    cd ./cogitate-msp1/coglib/fmri/decoding
    python MSP1_roi_decoding_plots.py                                   
  1. gppi Analysis Requires MATLAB (https://www.mathworks.com/products/matlab.html) and SPM (https://www.fil.ion.ucl.ac.uk/spm/)

a) Apply 3D nifti conversion and smoothing

Run time ~= 200 minutes per subject

    cd ./cogitate-msp1/coglib/fmri/gppi
    nifti3D_conversion.m      # Convert 4D niftis to 3D niftis for SPM analaysis
    smoothing.m               # Smooth 3D niftis

b) Run gppi on combined conditions

Run time ~= 240 minutes per subject

    cd ./cogitate-msp1/coglib/fmri/gppi
    glm_subject_level_combined.m           # Subject level GLM with category regressors collapsed across the relevant and irrelevant conditions (i.e face, object, letter, and false font regressors) 
    gppi_subject_level_combined.m          # Subject level gppi analysis

Group level gppi analysis

Run time ~= 60 minutes per subject

    module purge
    cd ./cogitate-msp1/coglib/fmri/gppi
    python gppi_group_analysis.py        # Plots group level stats map on axial brian slices 

c) Run gppi on separate conditions

Run time ~= 240 minutes per subject

    cd ./cogitate-msp1/coglib/fmri/gppi
    glm_subject_level.m                                    # Subject level GLM with separate category regressors for the relevant and irrelevant conditions (i.e relevant_face, relevant_object, relevant_letter, and relevant_false font) 
    gppi_subject_level.m                                   # Subject level gppi analysis

Group level gppi analysis

Run time ~= 60 minutes per subject

    module purge
    cd ./cogitate-msp1/coglib/fmri/gppi
    python gppi_group_analysis.py        # Plots group level stats map on axial brian slices 

d) Obtain gppi tables

Run time ~= 1 minutes

    module purge
    cd ./cogitate-msp1/coglib/fmri/gppi
    python gppi_group_level_tables.py    # gppi tables obtained based on the group level analysis 

e) Plot gppi analysis results on a brain surface

Run time ~= 5 minutes per contrast

    cd ./cogitate-msp1/coglib/fmri/gppi
    MSP1_gppi_plots.py            # Plot group level gppi stats map on a brain surface