-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclient.py
645 lines (599 loc) · 25.6 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
#!/usr/bin/python
# snakeoil.py
# Chris X Edwards <[email protected]>
# Snake Oil is a Python library for interfacing with a TORCS
# race car simulator which has been patched with the server
# extentions used in the Simulated Car Racing competitions.
# http://scr.geccocompetitions.com/
#
# To use it, you must import it and create a "drive()" function.
# This will take care of option handling and server connecting, etc.
# To see how to write your own client do something like this which is
# a complete working client:
# /-----------------------------------------------\
# |#!/usr/bin/python |
# |import snakeoil |
# |if __name__ == "__main__": |
# | C= snakeoil.Client() |
# | for step in xrange(C.maxSteps,0,-1): |
# | C.get_servers_input() |
# | snakeoil.drive_example(C) |
# | C.respond_to_server() |
# | C.shutdown() |
# \-----------------------------------------------/
# This should then be a full featured client. The next step is to
# replace 'snakeoil.drive_example()' with your own. There is a
# dictionary which holds various option values (see `default_options`
# variable for all the details) but you probably only need a few
# things from it. Mainly the `trackname` and `stage` are important
# when developing a strategic bot.
#
# This dictionary also contains a ServerState object
# (key=S) and a DriverAction object (key=R for response). This allows
# you to get at all the information sent by the server and to easily
# formulate your reply. These objects contain a member dictionary "d"
# (for data dictionary) which contain key value pairs based on the
# server's syntax. Therefore, you can read the following:
# angle, curLapTime, damage, distFromStart, distRaced, focus,
# fuel, gear, lastLapTime, opponents, racePos, rpm,
# speedX, speedY, speedZ, track, trackPos, wheelSpinVel, z
# The syntax specifically would be something like:
# X= o[S.d['tracPos']]
# And you can set the following:
# accel, brake, clutch, gear, steer, focus, meta
# The syntax is:
# o[R.d['steer']]= X
# Note that it is 'steer' and not 'steering' as described in the manual!
# All values should be sensible for their type, including lists being lists.
# See the SCR manual or http://xed.ch/help/torcs.html for details.
#
# If you just run the snakeoil.py base library itself it will implement a
# serviceable client with a demonstration drive function that is
# sufficient for getting around most tracks.
# Try `snakeoil.py --help` to get started.
import math
import socket
import json
import sys
import getopt
import numpy as np
from keras.models import load_model
PI = 3.14159265359
# Initialize help messages
ophelp = 'Options:\n'
ophelp += ' --host, -H <host> TORCS server host. [localhost]\n'
ophelp += ' --port, -p <port> TORCS port. [3001]\n'
ophelp += ' --id, -i <id> ID for server. [SCR]\n'
ophelp += ' --steps, -m <#> Maximum simulation steps. 1 sec ~ 50 steps. [100000]\n'
ophelp += ' --episodes, -e <#> Maximum learning episodes. [1]\n'
ophelp += ' --track, -t <track> Your name for this track. Used for learning. [unknown]\n'
ophelp += ' --stage, -s <#> 0=warm up, 1=qualifying, 2=race, 3=unknown. [3]\n'
ophelp += ' --file, -f <name> parameter file name [default_parameters]\n'
ophelp += ' --debug, -d Output full telemetry.\n'
ophelp += ' --help, -h Show this help.\n'
ophelp += ' --version, -v Show current version.'
usage = 'Usage: %s [ophelp [optargs]] \n' % sys.argv[0]
usage = usage + ophelp
version = "20130505-2"
def clip(v, lo, hi):
if v < lo:
return lo
elif v > hi:
return hi
else:
return v
def bargraph(x, mn, mx, w, c='X'):
'''Draws a simple asciiart bar graph. Very handy for
visualizing what's going on with the data.
x= Value from sensor, mn= minimum plottable value,
mx= maximum plottable value, w= width of plot in chars,
c= the character to plot with.'''
if not w: return '' # No width!
if x < mn: x = mn # Clip to bounds.
if x > mx: x = mx # Clip to bounds.
tx = mx - mn # Total real units possible to show on graph.
if tx <= 0: return 'backwards' # Stupid bounds.
upw = tx / float(w) # X Units per output char width.
if upw <= 0: return 'what?' # Don't let this happen.
negpu, pospu, negnonpu, posnonpu = 0, 0, 0, 0
if mn < 0: # Then there is a negative part to graph.
if x < 0: # And the plot is on the negative side.
negpu = -x + min(0, mx)
negnonpu = -mn + x
else: # Plot is on pos. Neg side is empty.
negnonpu = -mn + min(0, mx) # But still show some empty neg.
if mx > 0: # There is a positive part to the graph
if x > 0: # And the plot is on the positive side.
pospu = x - max(0, mn)
posnonpu = mx - x
else: # Plot is on neg. Pos side is empty.
posnonpu = mx - max(0, mn) # But still show some empty pos.
nnc = int(negnonpu / upw) * '-'
npc = int(negpu / upw) * c
ppc = int(pospu / upw) * c
pnc = int(posnonpu / upw) * '_'
return '[%s]' % (nnc + npc + ppc + pnc)
class Client():
def __init__(self, H=None, p=None, i=None, e=None, t=None, s=None, d=None, f=None):
# If you don't like the option defaults, change them here.
self.host = 'localhost'
self.port = 3001
self.sid = 'SCR'
self.maxEpisodes = 1 # "Maximum number of learning episodes to perform"
self.trackname = 'unknown'
self.stage = 3 # 0=Warm-up, 1=Qualifying 2=Race, 3=unknown <Default=3>
self.debug = False
self.maxSteps = 100000 # 50steps/second
self.pfilename = 'default_parameters'
self.parse_the_command_line()
if H: self.host = H
if p: self.port = p
if i: self.sid = i
if e: self.maxEpisodes = e
if t: self.trackname = t
if s: self.stage = s
if d: self.debug = d
self.S = ServerState()
self.R = DriverAction()
self.P = None
self.stds = np.load('./model/stds.npy', allow_pickle=True)
self.means = np.load('./model/means.npy', allow_pickle=True)
if f: self.pfilename = f
pfile = open(self.pfilename, 'r')
self.P = json.load(pfile)
self.setup_connection()
def setup_connection(self):
# == Set Up UDP Socket ==
try:
self.so = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
except socket.error:
print('Error: Could not create socket...')
sys.exit(-1)
# == Initialize Connection To Server ==
self.so.settimeout(1)
while True:
# This string establishes track sensor angles! You can customize them.
# a= "-90 -75 -60 -45 -30 -20 -15 -10 -5 0 5 10 15 20 30 45 60 75 90"
# xed- Going to try something a bit more aggressive...
# a= "-36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36"
# a= "-45 -36 -27.5 -19 -13 -8.4 -4 -1.7 -.5 0 .5 1.7 4 8.4 13 19 27.5 36 45"
# a= "-45 -27.5 -19 -13 -10 -8.4 -4 -1.7 -.5 0 .5 1.7 4 8.4 10 13 19 27.5 45"
a = "-90 -75 -50 -35 -20 -15 -10 -5 -1 0 1 5 10 15 20 35 50 75 90"
# xed- Going to try something a lot more aggressive...
# a= "-16.699244234 -8.53076560995 -5.7105931375 -4.28915332882 -3.43363036245 -2.86240522611 -2.45403167453 -2.1475854283 -1.909152433 0 1.909152433 2.1475854283 2.45403167453 2.86240522611 3.43363036245 4.28915332882 5.7105931375 8.53076560995 16.699244234"
initmsg = '%s(init %s)' % (self.sid, a)
try:
self.so.sendto(initmsg.encode(), (self.host, self.port))
except socket.error: # , emsg:
sys.exit(-1)
sockdata = str()
try:
sockdata, addr = self.so.recvfrom(1024)
sockdata = sockdata.decode()
except socket.error:
# print "Waiting for server on %d............" % self.port
pass
if '***identified***' in sockdata:
# print "Client connected on %d.............." % self.port
break
def parse_the_command_line(self):
try:
(opts, args) = getopt.getopt(sys.argv[1:], 'f:H:p:i:m:e:t:s:dhv',
['host=', 'port=', 'id=', 'steps=',
'episodes=', 'file=', 'track=', 'stage=',
'debug', 'help', 'version'])
except getopt.error:
# print 'getopt error: %s\n%s' % (why, usage)
sys.exit(-1)
try:
for opt in opts:
if opt[0] == '-h' or opt[0] == '--help':
print(usage)
sys.exit(0)
if opt[0] == '-d' or opt[0] == '--debug':
self.debug = True
if opt[0] == '-H' or opt[0] == '--host':
self.host = opt[1]
if opt[0] == '-i' or opt[0] == '--id':
self.sid = opt[1]
if opt[0] == '-t' or opt[0] == '--track':
self.trackname = opt[1]
if opt[0] == '-s' or opt[0] == '--stage':
self.stage = int(opt[1])
if opt[0] == '-p' or opt[0] == '--port':
self.port = int(opt[1])
if opt[0] == '-e' or opt[0] == '--episodes':
self.maxEpisodes = int(opt[1])
if opt[0] == '-f' or opt[0] == '--file':
self.pfilename = opt[1]
if opt[0] == '-m' or opt[0] == '--steps':
self.maxSteps = int(opt[1])
if opt[0] == '-v' or opt[0] == '--version':
print('%s %s' % (sys.argv[0], version))
sys.exit(0)
except ValueError: # , why:
print('Bad parameter \'%s\' for option %s: %s\n%s' % (
opt[1], opt[0], why, usage))
sys.exit(-1)
if len(args) > 0:
print('Superflous input? %s\n%s' % (', '.join(args), usage))
sys.exit(-1)
def get_servers_input(self):
'''Server's input is stored in a ServerState object'''
if not self.so: return
sockdata = str()
while True:
try:
# Receive server data
sockdata, addr = self.so.recvfrom(1024)
sockdata = sockdata.decode()
except socket.error: # , emsg:
print('.')
# print "Waiting for data on %d.............." % self.port)
if '***identified***' in sockdata:
print("Client connected on %d.............." % self.port)
continue
elif '***shutdown***' in sockdata:
print(("Server has stopped the race on %d. " +
"You were in %d place.") %
(self.port, self.S.d['racePos']))
self.shutdown()
return
elif '***restart***' in sockdata:
# What do I do here?
print("Server has restarted the race on %d." % self.port)
# I haven't actually caught the server doing this.
self.shutdown()
return
elif not sockdata: # Empty?
continue # Try again.
else:
self.S.parse_server_str(sockdata)
if self.debug:
sys.stderr.write("\x1b[2J\x1b[H") # Clear for steady output.
print(self.S)
break # Can now return from this function.
def respond_to_server(self):
if not self.so: return
try:
self.so.sendto(repr(self.R).encode(), (self.host, self.port))
except socket.error: # , emsg:
print("Error sending to server: %s Message %s" % (emsg[1], str(emsg[0])))
sys.exit(-1)
if self.debug: print(self.R.fancyout())
# Or use this for plain output:
# if self.debug: print self.R
def shutdown(self):
if not self.so: return
# print ("Race terminated or %d steps elapsed. Shutting down %d."
# % (self.maxSteps,self.port))
self.so.close()
self.so = None
# sys.exit() # No need for this really.
class ServerState():
'''What the server is reporting right now.'''
def __init__(self):
self.servstr = str()
self.d = dict()
def parse_server_str(self, server_string):
'''Parse the server string.'''
self.servstr = server_string.strip()[:-1]
sslisted = self.servstr.strip().lstrip('(').rstrip(')').split(')(')
for i in sslisted:
w = i.split(' ')
self.d[w[0]] = destringify(w[1:])
def __repr__(self):
# Comment the next line for raw output:
return self.fancyout()
# -------------------------------------
out = str()
for k in sorted(self.d):
strout = str(self.d[k])
if type(self.d[k]) is list:
strlist = [str(i) for i in self.d[k]]
strout = ', '.join(strlist)
out += "%s: %s\n" % (k, strout)
return out
def fancyout(self):
'''Specialty output for useful ServerState monitoring.'''
out = str()
sensors = [ # Select the ones you want in the order you want them.
# 'curLapTime',
# 'lastLapTime',
'stucktimer',
# 'damage',
# 'focus',
'fuel',
# 'gear',
'distRaced',
'distFromStart',
# 'racePos',
'opponents',
'wheelSpinVel',
'z',
'speedZ',
'speedY',
'speedX',
'targetSpeed',
'rpm',
'skid',
'slip',
'track',
'trackPos',
'angle',
]
# for k in sorted(self.d): # Use this to get all sensors.
for k in sensors:
if type(self.d.get(k)) is list: # Handle list type data.
if k == 'track': # Nice display for track sensors.
strout = str()
# for tsensor in self.d['track']:
# if tsensor >180: oc= '|'
# elif tsensor > 80: oc= ';'
# elif tsensor > 60: oc= ','
# elif tsensor > 39: oc= '.'
# #elif tsensor > 13: oc= chr(int(tsensor)+65-13)
# elif tsensor > 13: oc= chr(int(tsensor)+97-13)
# elif tsensor > 3: oc= chr(int(tsensor)+48-3)
# else: oc= '_'
# strout+= oc
# strout= ' -> '+strout[:9] +' ' + strout[9] + ' ' + strout[10:]+' <-'
raw_tsens = ['%.1f' % x for x in self.d['track']]
strout += ' '.join(raw_tsens[:9]) + '_' + raw_tsens[9] + '_' + ' '.join(raw_tsens[10:])
elif k == 'opponents': # Nice display for opponent sensors.
strout = str()
for osensor in self.d['opponents']:
if osensor > 190:
oc = '_'
elif osensor > 90:
oc = '.'
elif osensor > 39:
oc = chr(int(osensor / 2) + 97 - 19)
elif osensor > 13:
oc = chr(int(osensor) + 65 - 13)
elif osensor > 3:
oc = chr(int(osensor) + 48 - 3)
else:
oc = '?'
strout += oc
strout = ' -> ' + strout[:18] + ' ' + strout[18:] + ' <-'
else:
strlist = [str(i) for i in self.d[k]]
strout = ', '.join(strlist)
else: # Not a list type of value.
if k == 'gear': # This is redundant now since it's part of RPM.
gs = '_._._._._._._._._'
p = int(self.d['gear']) * 2 + 2 # Position
l = '%d' % self.d['gear'] # Label
if l == '-1': l = 'R'
if l == '0': l = 'N'
strout = gs[:p] + '(%s)' % l + gs[p + 3:]
elif k == 'damage':
strout = '%6.0f %s' % (self.d[k], bargraph(self.d[k], 0, 10000, 50, '~'))
elif k == 'fuel':
strout = '%6.0f %s' % (self.d[k], bargraph(self.d[k], 0, 100, 50, 'f'))
elif k == 'speedX':
cx = 'X'
if self.d[k] < 0: cx = 'R'
strout = '%6.1f %s' % (self.d[k], bargraph(self.d[k], -30, 300, 50, cx))
elif k == 'speedY': # This gets reversed for display to make sense.
strout = '%6.1f %s' % (self.d[k], bargraph(self.d[k] * -1, -25, 25, 50, 'Y'))
elif k == 'speedZ':
strout = '%6.1f %s' % (self.d[k], bargraph(self.d[k], -13, 13, 50, 'Z'))
elif k == 'z':
strout = '%6.3f %s' % (self.d[k], bargraph(self.d[k], .3, .5, 50, 'z'))
elif k == 'trackPos': # This gets reversed for display to make sense.
cx = '<'
if self.d[k] < 0: cx = '>'
strout = '%6.3f %s' % (self.d[k], bargraph(self.d[k] * -1, -1, 1, 50, cx))
elif k == 'stucktimer':
if self.d[k]:
strout = '%3d %s' % (self.d[k], bargraph(self.d[k], 0, 300, 50, "'"))
else:
strout = 'Not stuck!'
elif k == 'rpm':
g = self.d['gear']
if g < 0:
g = 'R'
else:
g = '%1d' % g
strout = bargraph(self.d[k], 0, 10000, 50, g)
elif k == 'angle':
asyms = [
" ! ", ".|' ", "./' ", "_.- ", ".-- ", "..- ",
"--- ", ".__ ", "-._ ", "'-. ", "'\. ", "'|. ",
" | ", " .|'", " ./'", " .-'", " _.-", " __.",
" ---", " --.", " -._", " -..", " '\.", " '|."]
rad = self.d[k]
deg = int(rad * 180 / PI)
symno = int(.5 + (rad + PI) / (PI / 12))
symno = symno % (len(asyms) - 1)
strout = '%5.2f %3d (%s)' % (rad, deg, asyms[symno])
elif k == 'skid': # A sensible interpretation of wheel spin.
frontwheelradpersec = self.d['wheelSpinVel'][0]
skid = 0
if frontwheelradpersec:
skid = .5555555555 * self.d['speedX'] / frontwheelradpersec - .66124
strout = bargraph(skid, -.05, .4, 50, '*')
elif k == 'slip': # A sensible interpretation of wheel spin.
frontwheelradpersec = self.d['wheelSpinVel'][0]
slip = 0
if frontwheelradpersec:
slip = ((self.d['wheelSpinVel'][2] + self.d['wheelSpinVel'][3]) -
(self.d['wheelSpinVel'][0] + self.d['wheelSpinVel'][1]))
strout = bargraph(slip, -5, 150, 50, '@')
else:
strout = str(self.d[k])
out += "%s: %s\n" % (k, strout)
return out
class DriverAction():
'''What the driver is intending to do (i.e. send to the server).
Composes something like this for the server:
(accel 1)(brake 0)(gear 1)(steer 0)(clutch 0)(focus 0)(meta 0) or
(accel 1)(brake 0)(gear 1)(steer 0)(clutch 0)(focus -90 -45 0 45 90)(meta 0)'''
def __init__(self):
self.actionstr = str()
# "d" is for data dictionary.
self.d = {'accel': 0.2,
'brake': 0,
'clutch': 0,
'gear': 1,
'steer': 0,
'focus': [-90, -45, 0, 45, 90],
'meta': 0
}
def clip_to_limits(self):
"""There pretty much is never a reason to send the server
something like (steer 9483.323). This comes up all the time
and it's probably just more sensible to always clip it than to
worry about when to. The "clip" command is still a snakeoil
utility function, but it should be used only for non standard
things or non obvious limits (limit the steering to the left,
for example). For normal limits, simply don't worry about it."""
self.d['steer'] = clip(self.d['steer'], -1, 1)
self.d['brake'] = clip(self.d['brake'], 0, 1)
self.d['accel'] = clip(self.d['accel'], 0, 1)
self.d['clutch'] = clip(self.d['clutch'], 0, 1)
if self.d['gear'] not in [-1, 0, 1, 2, 3, 4, 5, 6]:
self.d['gear'] = 0
if self.d['meta'] not in [0, 1]:
self.d['meta'] = 0
if type(self.d['focus']) is not list or min(self.d['focus']) < -180 or max(self.d['focus']) > 180:
self.d['focus'] = 0
def __repr__(self):
self.clip_to_limits()
out = str()
for k in self.d:
out += '(' + k + ' '
v = self.d[k]
if not type(v) is list:
out += '%.3f' % v
else:
out += ' '.join([str(x) for x in v])
out += ')'
return out
return out + '\n'
def fancyout(self):
'''Specialty output for useful monitoring of bot's effectors.'''
out = str()
od = self.d.copy()
od.pop('gear', '') # Not interesting.
od.pop('meta', '') # Not interesting.
od.pop('focus', '') # Not interesting. Yet.
for k in sorted(od):
if k == 'clutch' or k == 'brake' or k == 'accel':
strout = ''
strout = '%6.3f %s' % (od[k], bargraph(od[k], 0, 1, 50, k[0].upper()))
elif k == 'steer': # Reverse the graph to make sense.
strout = '%6.3f %s' % (od[k], bargraph(od[k] * -1, -1, 1, 50, 'S'))
else:
strout = str(od[k])
out += "%s: %s\n" % (k, strout)
return out
# == Misc Utility Functions
def destringify(s):
'''makes a string into a value or a list of strings into a list of
values (if possible)'''
if not s: return s
if type(s) is str:
try:
return float(s)
except ValueError:
print("Could not find a value in %s" % s)
return s
elif type(s) is list:
if len(s) < 2:
return destringify(s[0])
else:
return [destringify(i) for i in s]
def drive_example(c):
'''This is only an example. It will get around the track but the
correct thing to do is write your own `drive()` function.'''
S, R = c.S.d, c.R.d
target_speed = 100
# Steer To Corner
R['steer'] = S['angle'] * 10 / PI
# Steer To Center
R['steer'] -= S['trackPos'] * .10
# Throttle Control
if S['speedX'] < target_speed - (R['steer'] * 50):
R['accel'] += .01
else:
R['accel'] -= .01
if S['speedX'] < 10:
R['accel'] += 1 / (S['speedX'] + .1)
# Traction Control System
if ((S['wheelSpinVel'][2] + S['wheelSpinVel'][3]) -
(S['wheelSpinVel'][0] + S['wheelSpinVel'][1]) > 5):
R['accel'] -= .2
# Automatic Transmission
R['gear'] = 1
if S['speedX'] > 50:
R['gear'] = 2
if S['speedX'] > 80:
R['gear'] = 3
if S['speedX'] > 110:
R['gear'] = 4
if S['speedX'] > 140:
R['gear'] = 5
if S['speedX'] > 170:
R['gear'] = 6
return
def my_drive_fn(c, model):
S, R = c.S.d, c.R.d
gear = S['gear']
rpm = S['rpm']
# logic for reverse start
global count
if rpm >= 9200 and gear < 6:
gear += 1
count = 0
elif rpm <= 5500 and gear > 1:
gear -= 1
count = 0
if int(S['distRaced']) > 2 and S['speedX'] < 4:
count += 1
if 20 <= count < 1200 * 3:
gear = -1
count += 1
if count >= 1200 * 3:
gear = 1
count = 0
# logic for reverse end
test_example = np.ndarray((71,), dtype=np.float64)
R['gear'] = gear
test_example[0] = S['angle']
test_example[1] = S['distFromStart']
test_example[2] = S['distRaced']
test_example[3] = S['fuel']
test_example[4] = S['gear']
test_example[5:41] = S['opponents']
test_example[41] = S['racePos']
test_example[42] = S['rpm']
test_example[43] = S['speedX']
test_example[44] = S['speedY']
test_example[45] = S['speedZ']
test_example[46:65] = S['track']
test_example[65] = S['trackPos']
test_example[66:70] = S['wheelSpinVel']
test_example[70] = S['z']
test_example = test_example - c.means
test_example = test_example / c.stds
predictions = model.predict(test_example.reshape(1, -1), batch_size=1).flatten()
print(predictions)
R['accel'] = predictions[0]
R['brake'] = predictions[1]
R['clutch'] = predictions[2]
R['steer'] = predictions[3]
return
# ================ MAIN ================
if __name__ == "__main__":
model = load_model(r'./model/FullModel_Symm1024_b2048.h5')
C = Client()
count = 0
for step in range(C.maxSteps, 0, -1):
C.get_servers_input()
if step % 3 == 0:
my_drive_fn(C, model)
C.respond_to_server()
C.shutdown()