Skip to content

Latest commit

 

History

History
48 lines (38 loc) · 1.71 KB

readme.md

File metadata and controls

48 lines (38 loc) · 1.71 KB

ABSC, a project for aspect-based sentiment classification

Requirements

  • python 3.5
  • pytorch 0.4
  • tensorboardX
  • absl-py
  • nltk
  • tqdm

Usage

# prepro
python -m lstm.main --mode prepro
# train
python -m lstm.main --mode train
# test
python -m lstm.main --mode test
# You can set different parameters or use different models and datasets.

Experiment Result

Models Restaurant_category Restaurant Laptop
lstm - - -
atae_lstm - 77.86/65.59 68.34/62.64
acsa_gcae - 78.12/65.59 70.85/64.66
bilstm_att_g - 76.34/63.65 69.91/63.20
acsa_gcae_g - - -
ram - 78.66/66.66 73.82/68.80
tnet - 78.93/63.65 72.57/65.13

Direcotory

  • data: the semeval2014 dataset
  • lstm: lstm model
  • atae_lstm: Wang, Yequan, Minlie Huang, and Li Zhao. "Attention-based lstm for aspect-level sentiment classification." Proceedings of the 2016 conference on empirical methods in natural language processing. 2016.
  • bilstm_att_g: Liu, Jiangming, and Yue Zhang. "Attention modeling for targeted sentiment." Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Vol. 2. 2017.
  • acsa_gcae: Xue, Wei, and Tao Li. "Aspect Based Sentiment Analysis with Gated Convolutional Networks." arXiv preprint arXiv:1805.07043 (2018).
  • acsa_gcae: acsa_gcae + gates
  • tnet: Li, Xin, et al. "Transformation Networks for Target-Oriented Sentiment Classification." arXiv preprint arXiv:1805.01086 (2018).

Note

Not every implementation works exactly the same as the original paper, if you find any problems in the implementation, please tell me([email protected]).