-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathER_status.R
39 lines (21 loc) · 1.39 KB
/
ER_status.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#Code to type ER status
library(sqldf)
exp.data <- read.csv.sql("C:/Users/nknoblau/Documents/R_WS/MatrixeQTLGLM/brca_RNAseq_expression.txt",sep="\t",header=T,eol="\n")
rownames(exp.data)<- exp.data[,1]
exp.data <- exp.data[,-1]
exp.data <- data.matrix(exp.data)
colnames(exp.data) <- gsub("_","-",colnames(exp.data))
plot(sort(exp.data["ESR1",]))
hist(exp.data["ESR1",])
#Train logistic regression model??
g.erstat <- read.delim("C:/Users/nknoblau/Documents/R_WS/MatrixeQTLGLM/clinical_patient_brca.txt",stringsAsFactors=F,header=T,fill=T)
colnames(exp.data)[!colnames(exp.data)%in% g.erstat$bcr_patient_barcode]
g.erstat <- g.erstat[ g.erstat$breast_carcinoma_estrogen_receptor_status %in% c("Positive","Negative"),]
g.erstat$ERSTAT <- ifelse(g.erstat$breast_carcinoma_estrogen_receptor_status=="Positive",1,0)
g.erstat <- g.erstat[ g.erstat$bcr_patient_barcode %in% colnames(exp.data),]
boxplot(split(exp.data["ESR1",g.erstat$bcr_patient_barcode],g.erstat$ERSTAT))
er.positive.seq <- exp.data[,g.erstat$bcr_patient_barcode[g.erstat$ERSTAT==1]]
er.negative.seq <- exp.data[,g.erstat$bcr_patient_barcode[g.erstat$ERSTAT==0]]
write.table(er.positive.seq,"brca_RNAseq_positive.txt",sep="\t",col.names=T,row.names=T,quote=F)
write.table(er.negative.seq,"brca_RNAseq_negative.txt",sep="\t",col.names=T,row.names=T,quote=F)
rnaseq.data <- read.csv.sql("brca_RNAseq_negative.txt",sep="\t",header=T,eol="\n")