-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathChartParser.hs
841 lines (747 loc) · 25.6 KB
/
ChartParser.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE LambdaCase #-}
{- | A chart-based semiring parser for path grammars (e.g. the PV grammar).
Path grammars operate on "paths"
consisting of nodes (slices) and edges (transitions),
both of which can contain arbitrary content.
Paths are elaborated through two operations,
@split@ting transitions and @spread@ing slices
(plus @freeze@, which terminates generation on a transition).
The parser is polymorphic in the grammar
as well as the contents of slices (path nodes) and transitions (path edges).
The grammar to parse is definend in an "evaluator" ('Common.Eval')
which provides completions for parsing the splits, spreads and freezes.
-}
module ChartParser
( -- * Parsing Interface
parse
, parseSize
, parseSilent
, logSize
, logTikz
-- * Charts
-- ** Basic Elements
, Slice
, Transition
, transLen
, Item
, TItem
-- ** Transition Chart
, TContents
, TChart
, tcGetByLength
-- ** Verticalization Chart
, Vert
, VChart
, vcGetByLength
-- * Constraint Aliases
, Parsable
, Normal
, Normal'
) where
import Common
import Scoring.FunTyped qualified as S
import Data.HashMap.Strict qualified as HM
import Data.IntMap.Strict qualified as IM
import Data.Semiring qualified as R
import Control.Monad.State as ST
import Control.DeepSeq
import Control.Parallel.Strategies qualified as P
import Data.Foldable (foldl')
import Data.Hashable
( Hashable
, hash
, hashWithSalt
)
import Data.Kind (Constraint, Type)
import Data.Maybe
( catMaybes
, fromMaybe
, mapMaybe
)
import Data.Set qualified as Set
import GHC.Generics (Generic)
-- Basic Types
-- ===========
-- | An alias for common constraints on slices and transitions
type Normal :: Type -> Constraint
type Normal x = (Eq x, Ord x, Show x, Hashable x, NFData x)
-- | An alias for common constraints on semiring values
type Normal' :: Type -> Constraint
type Normal' x = (Eq x, Show x, NFData x, R.Semiring x)
-- | A summary constraint for transitions, slices, and semiring values
type Parsable :: Type -> Type -> Type -> Constraint
type Parsable tr slc v = (Normal tr, Normal slc, Normal' v)
-- Slices
---------
{- | A slice during chart parsing.
Besides the slice content (e.g., notes),
it maintains indices to the first and last surface slice covered,
as well as an ID that is used for matching compatible parents of a spread.
-}
data Slice slc = Slice
{ sFirst :: !Int
-- ^ index of the first surface slice covered
, sContent :: !(StartStop slc)
-- ^ slice content (or 'Start'/'Stop')
, sID :: !Int
-- ^ unique slice ID
, sLast :: !Int
-- ^ index of the last surface slice covered
}
deriving (Eq, Ord, Generic, NFData)
instance (Eq slc) => Hashable (Slice slc) where
hashWithSalt s (Slice _ _ i _) = hashWithSalt s i
instance Show slc => Show (Slice slc) where
show (Slice f c i l) =
show f <> "-" <> show c <> "@" <> show i <> "-" <> show l
-- Transitions
--------------
{- | A transition during chart parsing.
Has pointers to the two slices it connects,
a content (e.g., protovoice connections),
and a flag indicating whether it is the second (right) parent of a spread.
-}
data Transition tr slc = Transition
{ tLeftSlice :: !(Slice slc)
, tContent :: !tr
, tRightSlice :: !(Slice slc)
, t2nd :: !Bool
}
deriving (Eq, Ord, Generic, NFData, Hashable)
instance (Show a, Show e) => Show (Transition e a) where
show (Transition l c r s) =
"<"
<> show l
<> ","
<> show c
<> ","
<> show r
<> ">"
<> if s
then "2"
else ""
-- | Returns the "length" of the transition in terms of surface slices covered.
transLen :: Transition e a -> Int
transLen (Transition l _ r _) = sLast r - sFirst l + 1
-- Items
--------
{- | A parsing item.
Combines an intermediate value (e.g. a transition) with a semiring score.
-}
data Item i v = (:=)
{ iItem :: !i
, iScore :: !(S.Score v Int)
}
deriving (Generic, NFData)
instance (Show i, Show v) => Show (Item i v) where
show (i := v) = show i <> " := " <> show v
-- | A transition item.
type TItem tr slc v = Item (Transition tr slc) v
-- Vert Items
{- | Represents the middle part of an incomplete unspread ("verticalization").
Expresses how the middle transition and the two child slices (@vMiddle@)
are derived from the parent slice (@vTop@) using a spread operation (@vOp@).
'Vert' objects are stored in the 'VChart'
to record the intermediate steps of an unspread,
which is found by first parsing the middle transition into the parent slice
(generating a 'Vert')
and then combining the 'Vert' with the left and right child transitions
to generate the left and right parent transitions, respectively.
-}
data Vert tr slc v = Vert
{ vTop :: !(Slice slc)
, vOp :: !v
, vMiddle :: !(TItem tr slc v)
}
deriving (Generic, NFData)
instance (Show e, Show a, Show v) => Show (Vert e a v) where
show (Vert top op m) =
"Vert"
<> "\n top: "
<> show top
<> "\n op: "
<> show op
<> "\n m: "
<> show m
-- slice and transition charts
-- ===========================
-- vert chart
-------------
-- ops:
-- - get all of len n
-- - get all with left child = x
-- - get all with right child = x
-- - check ID for (top,left,leftid)
{- | A verticalization chart.
Stores 'Vert' objects at certain chart positions.
To support efficient lookup of 'Vert' objects from different indices,
each 'Vert' is redundantly stored in several hash maps,
one for each index:
- by surface length
- by surface length (only left border of a 'Vert')
- by left child slice ID and mid transition length
- by right child ID
In addition, the 'VChart' maintains IDs of new slices.
(Every new slice is the parent of an unspread.)
-}
data VChart tr slc v = VChart
{ vcNextId :: !Int
-- ^ next free ID
, vcIDs :: !(HM.HashMap (Int, Int) Int)
-- ^ a mapping from child slice ids to the corresponding parent id
, vcByLength :: !(IM.IntMap [Vert tr slc v])
-- ^ maps surface length to the 'Vert' with that length
, vcByLengthLeft :: !(IM.IntMap (Set.Set (Slice slc, Slice slc)))
-- ^ maps surface length to the "left borders" of 'Vert' objects with that length
-- (parent slice, left child slice)
, vcByLeftChild :: !(HM.HashMap (Int, Int) (Set.Set (Slice slc)))
-- ^ maps a left child slice ID and the surface length of the middle transition
-- to its potential parent slices
, vcByRightChild :: !(HM.HashMap (Int, Int) [Vert tr slc v])
-- ^ maps a right child slice ID and the surface length of the middle transition
-- to all 'Vert' objects it is part of.
}
deriving (Generic, NFData)
instance (Show e, Show a, Show v) => Show (VChart e a v) where
show (VChart n _ is _ _ _) = "VChart (next id: " <> show n <> ")" <> levels
where
levels = concatMap showLevel $ IM.toAscList is
showLevel (l, items) = "\nlevel " <> show l <> ":" <> sitems
where
sitems = concatMap (("\n " <>) . show) items
-- | Returns an empty 'VChart' with the next free ID set to @n + 1@.
vcEmpty :: Int -> VChart e a v
vcEmpty n = VChart (n + 1) HM.empty IM.empty IM.empty HM.empty HM.empty
-- | Insert a new 'Vert' object into a 'VChart'.
vcInsert
:: (Hashable slc, Ord slc)
=> VChart tr slc v
-- ^ the old chart
-> (slc, v, TItem tr slc v)
-- ^ the new 'Vert' item's parent slice, operation, and middle child transition.
-> VChart tr slc v
-- ^ the new chart
vcInsert (VChart nextid ids bylen bylenleft byleft byright) (topContent, op, mid@(tmid := _)) =
let left = tLeftSlice tmid
right = tRightSlice tmid
idKey = (sID left, sID right)
(nextid', ids', i) = case HM.lookup idKey ids of
Just i' -> (nextid, ids, i')
Nothing -> (nextid + 1, HM.insert idKey nextid ids, nextid)
top = Slice (sFirst left) (Inner topContent) i (sLast right)
vert = [Vert top op mid]
vert' = Set.singleton (top, tLeftSlice tmid)
vertl = Set.singleton top
bylen' = IM.insertWith (<>) (transLen tmid) vert bylen
bylenleft' = IM.insertWith (<>) (transLen tmid) vert' bylenleft
byleft' = HM.insertWith (<>) (sID left, transLen tmid) vertl byleft
byright' = HM.insertWith (<>) (sID right, transLen tmid) vert byright
in VChart nextid' ids' bylen' bylenleft' byleft' byright'
-- | Merge a sequence of new items into a 'VChart'
vcMerge
:: (Foldable t, Ord slc, Hashable slc)
=> VChart tr slc v
-> t (slc, v, TItem tr slc v)
-> VChart tr slc v
vcMerge = foldl' vcInsert
-- | Returns all 'Vert' objects in the 'VChart' with the same length.
vcGetByLength
:: VChart tr slc v
-- ^ the chart
-> Int
-- ^ surface length of a middle transition
-> [Vert tr slc v]
-- ^ all corresponding 'Vert' objects
vcGetByLength chart len = fromMaybe [] $ IM.lookup len $ vcByLength chart
-- | Returns the "left borders" of all 'Vert' objects in the 'VChart' with the same length.
vcGetByLengthLeft
:: VChart tr slc v
-- ^ the chart
-> Int
-- ^ the surface length of a middle transition
-> [(Slice slc, Slice slc)]
-- ^ (parent slice, left slice) of all corresponding 'Vert' objects (without duplicates)
vcGetByLengthLeft chart len =
maybe [] Set.toList $ IM.lookup len (vcByLengthLeft chart)
{- | Returns the all potential parents of a left child slice
up to a certain middle transition length.
-}
vcGetByLeftChild
:: (Ord slc, Hashable slc)
=> Int
-- ^ maximum middle transition length
-> VChart tr slc v
-- ^ the chart
-> Slice slc
-- ^ the left child slice
-> [Slice slc]
-- ^ all potential parent slices
vcGetByLeftChild maxn chart left =
Set.toList $ Set.unions $ mapMaybe getN [2 .. maxn]
where
getN n = HM.lookup (sID left, n) $ vcByLeftChild chart
{- | Returns all 'Vert' objects with the same right child
up to a certain middle transition length.
-}
vcGetByRightChild
:: (Ord slc, Hashable slc)
=> Int
-- ^ ID of the right child
-> VChart tr slc v
-> Slice slc
-> [Vert tr slc v]
vcGetByRightChild maxn chart right =
concat $ mapMaybe getN [2 .. maxn]
where
getN n = HM.lookup (sID right, n) $ vcByRightChild chart
-- transition chart
-------------------
-- ops:
-- - get all of length n
-- - get all with left slice l
-- - get all with right slice r
{- | The contents of a transition chart (under a particular index).
A mapping from transitions (with score ID constraints left and right)
to (partial) semiring scores.
This mapping usually contains all transition items that satisfy a certain criterion,
irrespective of their position in the chart (which is encoded in the transitions themselves).
When new transition items are added, if the transition already exists in the chart
(as the result of a different partial parse),
the scores of the new and existing items are "added" (this also requires the score IDs to match).
-}
type TContents tr slc v =
HM.HashMap
(Transition tr slc, Maybe (S.LeftId Int), Maybe (S.RightId Int))
(S.Score v Int)
{- | A transition chart.
Stores intermediate transition items redundantly under several indices:
- by surface length
- by left slice
- by right slice
-}
data TChart tr slc v = TChart
{ tcByLength :: !(IM.IntMap (TContents tr slc v))
, tcByLeft :: !(HM.HashMap (Slice slc) (TContents tr slc v))
, tcByRight :: !(HM.HashMap (Slice slc) (TContents tr slc v))
}
deriving (Show, Generic, NFData)
-- | Returns an empty transition chart.
tcEmpty :: TChart tr slc v
tcEmpty = TChart IM.empty HM.empty HM.empty
-- TODO: there might be room for improvement here
{- | Insert a new transition item into the transition chart.
If the item's transition already exists, the existing and new score are "added".
-}
tcInsert :: (Parsable tr slc v) => TChart tr slc v -> TItem tr slc v -> TChart tr slc v
tcInsert (TChart len left right) (t := v) =
let new = HM.singleton (t, S.leftSide v, S.rightSide v) v
len' = IM.insertWith insert (transLen t) new len
left' = HM.insertWith insert (tLeftSlice t) new left
right' = HM.insertWith insert (tRightSlice t) new right
in TChart len' left' right'
where
insert = HM.unionWithKey (\_ s1 s2 -> S.addScores s1 s2)
-- | Insert several transition items into the transition chart.
tcMerge
:: (Foldable t, Parsable tr slc v)
=> TChart tr slc v
-> t (TItem tr slc v)
-> TChart tr slc v
tcMerge = foldl' tcInsert
-- | Helper function for getting transition items from the transition chart.
tcGetAny
:: (TChart tr slc v -> m)
-> (TContents tr slc v -> k -> m -> TContents tr slc v)
-> TChart tr slc v
-> k
-> [TItem tr slc v]
tcGetAny field getter chart key =
fmap mkItem $ HM.toList $ getter HM.empty key $ field chart
where
mkItem ((t, _, _), v) = t := v
-- | Returns all transition items with the same length.
tcGetByLength :: TChart tr slc v -> Int -> [TItem tr slc v]
tcGetByLength = tcGetAny tcByLength IM.findWithDefault
-- | Returns all transition items with the same left slice.
tcGetByLeft :: (Ord slc, Hashable slc) => TChart tr slc v -> Slice slc -> [TItem tr slc v]
tcGetByLeft = tcGetAny tcByLeft HM.findWithDefault
-- | Returns all transition items with the same right slice.
tcGetByRight :: (Ord slc, Hashable slc) => TChart tr slc v -> Slice slc -> [TItem tr slc v]
tcGetByRight = tcGetAny tcByRight HM.findWithDefault
-- parsing machinery
-- =================
-- applying evaluators
----------------------
-- TODO: add checks that adjacent transitions and slices match?
-- | Unspreads the two slices of a (middle) transition, if possible.
unspreadMiddle
:: UnspreadMiddle tr slc v
-- ^ the UnspreadMiddle evaluator
-> TItem tr slc v
-- ^ the middle transition
-> Maybe (slc, v, TItem tr slc v)
-- ^ the top slice, unspread operation,
-- and middle transition
unspreadMiddle unspreadm im@((Transition l m r _) := _) = do
il <- getInner $ sContent l
ir <- getInner $ sContent r
(top, op) <- unspreadm (il, m, ir)
pure (top, op, im)
-- | Infers the possible left parent transitions of an unspread.
unspreadLeft
:: (Show slc, Show tr, R.Semiring v, Show v)
=> UnspreadLeft tr slc
-- ^ the UnspreadLeft evaluator
-> TItem tr slc v
-- ^ the left child transition
-> Slice slc
-- ^ the Vert's top slice and ID
-> [TItem tr slc v]
-- ^ all possible left parent transitions
unspreadLeft unspreadl (tleft@(Transition ll lt lr is2nd) := vleft) top
| is2nd = []
| otherwise = fromMaybe err $ do
ir <- getInner $ sContent lr
itop <- getInner $ sContent top
pure $ mkParent v' <$> unspreadl (lt, ir) itop
where
err =
error $
"Illegal left-unspread: left="
<> show tleft
<> ", top="
<> show top
v' = S.unspreadScoresLeft (sID top) vleft
mkParent v t = Transition ll t top False := v
-- | Infers the possible right parent transitions of an unspread.
unspreadRight
:: (R.Semiring v, NFData slc, NFData tr, NFData v, Show tr, Show slc, Show v)
=> UnspreadRight tr slc
-- ^ the UnspreadRight evaluator
-> Vert tr slc v
-- ^ the center 'Vert'
-> TItem tr slc v
-- ^ the right child transition
-> [TItem tr slc v]
-- ^ all possible right parent transitions
unspreadRight unspreadr vert@(Vert top op (_ := vm)) tright@((Transition rl rt rr _) := vr) =
fromMaybe err $ do
ir <- getInner $ sContent rl
pure $ force $ mkParent v' <$> unspreadr (ir, rt) ir
where
err =
error $
"Illegal right-unspread: vert="
<> show vert
<> ", right="
<> show tright
v' = S.unspreadScoresRight (sID top) op vm vr
mkParent v t = Transition top t rr True := v
-- | Infers the possible parent transitions of a split.
unsplit
:: (R.Semiring v, NFData slc, NFData tr, NFData v, Show v)
=> Unsplit tr slc v
-- ^ the Unsplit evaluator
-> TItem tr slc v
-- ^ the left child transition
-> TItem tr slc v
-- ^ the right child transition
-> [TItem tr slc v]
-- ^ all possible parent transitions
unsplit mg ((Transition ll lt lr l2nd) := vl) ((Transition _ !rt !rr _) := vr) =
case getInner $ sContent lr of
Just m ->
force $ mkItem <$> mg (sContent ll) lt m rt (sContent rr) splitType
Nothing -> error "trying to unsplit at a non-content slice"
where
splitType
| l2nd = RightOfTwo
| isStop (sContent rr) = SingleOfOne
| otherwise = LeftOfTwo
mkItem (!top, !op) = Transition ll top rr l2nd := S.unsplitScores op vl vr
-- the parsing main loop
------------------------
-- | parallelized map
pmap :: NFData b => (a -> b) -> [a] -> [b]
pmap f = P.withStrategy (P.parList P.rdeepseq) . map f
-- pmap = map
{- | A type alias for pair of transition chart ('TChart')
and verticalization chart ('VChart').
-}
type ParseState tr slc v = (TChart tr slc v, VChart tr slc v)
{- | Type alias for a monadic parsing operation.
A function that takes a level and a 'ParseState'
and produces a monadic parsing action yielding a new state.
Used to express the main parsing loop
as well as all substeps that transform the charts on a specific level.
-}
type ParseOp m tr slc v = Int -> ParseState tr slc v -> m (ParseState tr slc v)
-- | A single level iteration of the chart parser.
parseStep
:: (Parsable tr slc v)
=> (TChart tr slc v -> VChart tr slc v -> Int -> IO ())
-- ^ a logging function that takes charts and level number.
-> Eval tr tr' slc slc' v
-- ^ the grammar's evaluator
-> ParseOp IO tr slc v
-- ^ the parsing operation (from level number and charts to new charts).
parseStep logCharts (Eval eMid eLeft eRight eUnsplit _ _) n charts = do
uncurry logCharts charts n
unspreadAllMiddles eMid n charts
>>= unspreadAllLefts eLeft n
>>= unspreadAllRights eRight n
>>= unsplitAll eUnsplit n
-- | Verticalizes all edges of length @n@.
unspreadAllMiddles
:: (Monad m, Parsable tr slc v) => UnspreadMiddle tr slc v -> ParseOp m tr slc v
unspreadAllMiddles evalMid n (!tchart, !vchart) = do
let ts = tcGetByLength tchart n
!newVerts = catMaybes $ pmap (unspreadMiddle evalMid) $!! ts
vchart' = vcMerge vchart newVerts
return (tchart, vchart')
-- | Perform all left unspreads where either @l@ or @m@ have length @n@.
unspreadAllLefts
:: (Monad m, Parsable tr slc v) => UnspreadLeft tr slc -> ParseOp m tr slc v
unspreadAllLefts evalLeft n (!tchart, !vchart) = do
let
-- left = n (and middle <= n)
leftn =
pmap (uncurry $ unspreadLeft evalLeft) $!! do
-- in list monad
left <- tcGetByLength tchart n
top <- vcGetByLeftChild n vchart (tRightSlice $ iItem left)
pure (left, top)
-- middle = n (and left < n)
midn =
pmap (uncurry $ unspreadLeft evalLeft) $!! do
-- in list monad
(top, lslice) <- vcGetByLengthLeft vchart n
left <-
filter (\item -> transLen (iItem item) < n) $
tcGetByRight tchart lslice
pure (left, top)
-- insert new transitions into chart
tchart' = foldl' tcMerge (foldl' tcMerge tchart leftn) midn
return (tchart', vchart)
-- | Perform all right unspreads where either @r@ or @m@ have length @n@
unspreadAllRights
:: (Monad m, Parsable tr slc v) => UnspreadRight tr slc -> ParseOp m tr slc v
unspreadAllRights evalRight n (!tchart, !vchart) = do
let
-- right = n (and middle <= n)
!rightn =
force $ pmap (uncurry $ unspreadRight evalRight) $!! do
-- in list monad
right <- tcGetByLength tchart n
vert <- vcGetByRightChild n vchart (tLeftSlice $ iItem right)
pure (vert, right)
-- middle = n (and left < n)
!midn =
force $ pmap (uncurry $ unspreadRight evalRight) $!! do
-- in list monad
vert <- vcGetByLength vchart n
right <-
filter (\i -> transLen (iItem i) < n) $
tcGetByLeft tchart (tRightSlice $ iItem $ vMiddle vert)
pure (vert, right)
-- insert new transitions into chart
!tchart' = foldl' tcMerge (foldl' tcMerge tchart rightn) midn
return (tchart', vchart)
-- | perform all unsplits where either @l@ or @r@ have length @n@
unsplitAll
:: forall tr slc v m
. (Monad m, Parsable tr slc v)
=> Unsplit tr slc v
-> ParseOp m tr slc v
unsplitAll unsplitter n (!tchart, !vchart) = do
let !byLen = force $ tcGetByLength tchart n
-- left = n (and right <= n)
!leftn =
pmap (uncurry (unsplit unsplitter)) $!! do
left <- byLen
right <-
filter (\r -> transLen (iItem r) <= n) $
tcGetByLeft tchart (tRightSlice $ iItem left)
pure (left, right)
-- right = n (and left < n)
!rightn =
pmap (uncurry (unsplit unsplitter)) $!! do
right <- byLen
left <-
filter (\l -> transLen (iItem l) < n) $
tcGetByRight tchart (tLeftSlice $ iItem right)
pure (left, right)
-- insert new transitions into chart
!tchart' = foldl' tcMerge (foldl' tcMerge tchart leftn) rightn
return (tchart', vchart)
-- parsing entry point
----------------------
{- | The main entrypoint to the parser.
Expects an evaluator for the specific grammar
and an input path.
Returns the combined semiring value of all full derivations.
-}
parse
:: Parsable tr slc v
=> (TChart tr slc v -> Either (VChart tr slc v) [Slice slc] -> Int -> IO ())
-- ^ logging function
-> Eval tr tr' slc slc' v
-- ^ the grammar's evaluator
-> Path slc' tr'
-- ^ the input path (from first to last slice, excluding 'Start' and 'Stop')
-> IO v
-- ^ the semiring value at the top
parse logCharts eval path = do
logCharts tinit (Right $ pathArounds slicePath) 1
(tfinal, vfinal) <-
foldM
(flip $ parseStep (\t v i -> logCharts t (Left v) i) eval)
(tinit, vcEmpty len)
[2 .. len - 1]
logCharts tfinal (Left vfinal) len
let goals = tcGetByLength tfinal len
return $ R.sum $ S.getScoreVal . iScore <$> goals
where
wrapPath (Path a e rst) = Path (Inner a) (Just e) $ wrapPath rst
wrapPath (PathEnd a) = Path (Inner a) Nothing $ PathEnd Stop
path' = Path Start Nothing $ wrapPath path
len = pathLen path'
slicePath =
mapAroundsWithIndex
0
(\i notes -> Slice i (evalSlice eval <$> notes) i i)
path'
mkTrans l esurf r =
mk
<$> evalUnfreeze
eval
(sContent l)
esurf
(sContent r)
(isStop $ sContent r)
where
mk (e, v) = Transition l e r False := S.val v
trans0 = mapBetweens mkTrans slicePath
tinit = tcMerge tcEmpty $ concat trans0
-- | A logging function that logs the sice of the charts at each level.
logSize
:: TChart tr1 slc1 v1 -> Either (VChart tr2 slc2 v2) [Slice slc2] -> Int -> IO ()
logSize tc vc n = do
putStrLn $ "parsing level " <> show n
putStrLn $ "transitions: " <> show (length $ tcGetByLength tc n)
let nverts = case vc of
Left chart -> length $ vcGetByLength chart (n - 1)
Right lst -> length lst
putStrLn $ "verts: " <> show nverts
-- | Parse a piece using the 'logSize' logging function.
parseSize :: Parsable tr slc v => Eval tr tr' slc slc' v -> Path slc' tr' -> IO v
parseSize = parse logSize
-- | A logging function that does nothing.
logNone :: Applicative f => p1 -> p2 -> p3 -> f ()
logNone _ _ _ = pure ()
-- | Parse a piece without logging.
parseSilent :: Parsable tr slc v => Eval tr tr' slc slc' v -> Path slc' tr' -> IO v
parseSilent = parse logNone
-- fancier logging
-- ---------------
-- | Generate TikZ code for a slice.
printTikzSlice :: Show slc => Slice slc -> IO ()
printTikzSlice (Slice f sc sid l) = do
putStrLn $
" \\node[slice,align=center] (slice"
<> show sid
<> ") at ("
<> show (fromIntegral (f + l) / 2.0)
<> ",0) {"
<> showTex sc
<> "\\\\ "
<> show sid
<> "};"
-- | Generate TikZ code for a verticalization.
printTikzVert neighbors (Vert top@(Slice f c i l) _ middle) = do
let index = f + l
xpos = fromIntegral (f + l) / 2.0
ypos = IM.findWithDefault 0 index neighbors
neighbors' =
IM.alter
( \case
Just n -> Just (n + 1)
Nothing -> Just 1
)
index
neighbors
putStrLn $
" \\node[slice,align=center] (slice"
<> show i
<> ") at ("
<> show xpos
<> ","
<> show ypos
<> ") {"
<> showTex c
<> "\\\\ ("
<> show (sID $ tLeftSlice $ iItem middle)
<> ") - "
<> show i
<> " - ("
<> show (sID $ tRightSlice $ iItem middle)
<> ")};"
pure neighbors'
-- | Generate TikZ code for a transition.
printTikzTrans neighbors t@(Transition sl tc sr _) = do
let tid = "t" <> show (hash t)
index = sFirst sl + sLast sr
xpos = fromIntegral index / 2.0
ypos = IM.findWithDefault 0 index neighbors
neighbors' =
IM.alter
( \case
Just n -> Just (n + 1)
Nothing -> Just 1
)
index
neighbors
putStrLn $
" \\begin{scope}[xshift="
<> show xpos
<> "cm,yshift="
<> show ypos
<> "cm]"
putStrLn $
" \\node[slice] ("
<> tid
<> "left) at (-0.1,0) {"
<> show (sID sl)
<> "};"
putStrLn $
" \\node[slice] ("
<> tid
<> "right) at (0.1,0) {"
<> show (sID sr)
<> "};"
-- printTikzSlice sl (tid <> "left") "(-0.2,0)"
-- printTikzSlice sr (tid <> "right") "(0.2,0)"
putStrLn $
" \\draw[transition] ("
<> tid
<> "left) -- ("
<> tid
<> "right);"
putStrLn " \\end{scope}"
pure neighbors'
-- | A logging function that emits the state of the chart in TikZ code at every level.
logTikz tc vc n = do
putStrLn $ "\n% level " <> show n
let rel =
if n <= 2
then ""
else ",shift={($(0,0 |- scope" <> show (n - 1) <> ".north)+(0,1cm)$)}"
putStrLn $ "\\begin{scope}[local bounding box=scope" <> show n <> rel <> "]"
putStrLn " % verticalizations:"
case vc of
Left chart -> foldM_ printTikzVert IM.empty $ vcGetByLength chart (n - 1)
Right lst -> mapM_ printTikzSlice lst
putStrLn "\n % transitions:"
foldM_ printTikzTrans IM.empty $ iItem <$> tcGetByLength tc n
putStrLn "\\end{scope}"