Skip to content

Latest commit

 

History

History
49 lines (32 loc) · 1.24 KB

Usage.md

File metadata and controls

49 lines (32 loc) · 1.24 KB

Usage

In Script

cd ~cygnss-deployment

# download CyGNSS data
python API.py

# download ERA5 data and annotate CyGNSS data with wind speed labels
# preprocss (filter) to create hdf5
python Preprocessing.py

# Inference
PYTHONPATH="./externals/gfz_cygnss/":${PYTHONPATH}
export PYTHONPATH

python ./externals/gfz_cygnss/gfz_202003/training/cygnssnet.py --load-model-path ./externals/gfz_cygnss/trained_models/ygambdos_yykDM.ckpt --data ./dev_data --save-y-true --prediction-output-path ./prediction/current_predictions.h5

In Jupyter notebook

Kernel

Create conda environment using

conda env create --file docker/kernel-env-cuda11.yaml

conda activate cygnss-d

# some packages were not installed correctly
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
conda install pytorch-lightning -c conda-forge
pip install global-land-mask

Create Jupyterhub kernel from this environment following https://docs.dkrz.de/doc/software%26services/jupyterhub/kernels.html

Setup for preprocessing

Earthdata

  • Retrieve user ID and create .netrc as described in ...
  • change the persmission of the file: chmod og-rwx ~/.netrc

ERA5

Retrieve user ID and API key and create cdsapi as described in ...