-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmain.py
339 lines (298 loc) · 17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import os
import sys
import time
import argparse
import torch
import torch_sparse
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.nn.utils import parameters_to_vector, vector_to_parameters
import networkx as nx
import numpy as np
import warnings
from scipy.sparse import SparseEfficiencyWarning
warnings.simplefilter('ignore', SparseEfficiencyWarning)
from utils import *
from models import *
from cf_utils import calc_disc, sample_nodepairs, load_t_files
def get_args():
parser = argparse.ArgumentParser(description='CFLP')
parser.add_argument('--dataset', type=str, default='cora')
parser.add_argument('--datapath', type=str, default='data/')
parser.add_argument('--log_dir', type=str, default='logs/')
parser.add_argument('--embraw', type=str, default='mvgrl')
parser.add_argument('--t', type=str, default='kcore', help='choice of the treatment function')
parser.add_argument('--k', type=int, default=2, help='parameter for the treatment function (if needed)')
parser.add_argument('--selfloopT', default=False, action='store_true', help='whether to add selfloop when getting T')
parser.add_argument('--dist', type=str, default='euclidean', help='distant metric used when finding nearest neighbors')
parser.add_argument('--alpha', type=float, default=1, help='weight of cf loss')
parser.add_argument('--beta', type=float, default=1, help='weight of discrepancy loss')
parser.add_argument('--gamma', type=float, default=30.0, help='maximum distance thresold for finding nearest neighbors')
parser.add_argument('--neg_rate', type=int, default=1, help='rate of negative samples during training')
parser.add_argument('--dec', type=str, default='hadamard', choices=['innerproduct','hadamard','mlp'], help='choice of decoder')
parser.add_argument('--seed', type=int, default=-1, help='fix random seed if needed')
parser.add_argument('--verbose', type=int, default=1, help='whether to print per-epoch logs')
parser.add_argument('--trails', type=int, default=1)
parser.add_argument('--gpu', type=int, default=-1, help='-2 for CPU, -1 for default GPU, >=0 for specific GPU')
parser.add_argument('--n_workers', type=int, default=20, help='number of CPU processes for finding counterfactual links in the first run')
parser.add_argument('--gnn_type', type=str, default='GCN',choices=['SAGE','GCN'])
parser.add_argument('--jk_mode', type=str, default='mean',choices=['max','cat','mean','lstm','sum','none'])
parser.add_argument('--dim_h', type=int, default=256)
parser.add_argument('--dim_z', type=int, default=256)
parser.add_argument('--num_np', type=int, default=1000, help='number of sampled node pairs when calculating disc loss')
parser.add_argument('--patience', type=int, default=100, help='number of patience steps for early stopping')
parser.add_argument('--epochs', type=int, default=2000)
parser.add_argument('--epochs_ft', type=int, default=1000)
parser.add_argument('--batch_size', type=int, default=1024*64)
parser.add_argument('--dropout', type=float, default=0.3)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--lr_ft', type=float, default=5e-3)
parser.add_argument('--l2reg', type=float, default=5e-6)
parser.add_argument('--val_frac', type=float, default=0.1, help='fraction of edges for validation set (and same number of no-edges)')
parser.add_argument('--test_frac', type=float, default=0.2, help='fraction of edges for testing set (and same number of no-edges)')
parser.add_argument('--disc_func', type=str, default='lin', choices=['lin', 'kl', 'w'], help='distance function for discrepancy loss')
parser.add_argument('--lr_scheduler', type=str, default='zigzag', choices=['sgdr', 'cos', 'zigzag', 'none'], help='lr scheduler')
parser.add_argument('--cal_ate', action='store_true', help='whether to calculate observed and estimated ATE')
parser.add_argument('--metric', type=str, default='auc', choices=['auc', 'hits@20', 'hits@50'], help='main evaluation metric')
parser.add_argument('--name', type=str, default='debug', help='name for this run for logging')
args = parser.parse_args()
args.argv = sys.argv
if args.gpu >= 0:
torch.cuda.set_device(args.gpu)
args.device = torch.device('cuda:0' if args.gpu >= -1 else 'cpu')
return args
def train(args, logger):
if args.seed > 0:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# load data
adj_label, features, dim_feat, adj_train, train_pairs, val_edges, val_edges_false, test_edges, test_edges_false = load_data(args, logger)
# load n by n treatment matrix
T_file_path = f'{args.datapath}T_files/'
if not os.path.exists(T_file_path):
os.makedirs(T_file_path, exist_ok=True)
T_file = f'{T_file_path}{args.dataset}_{args.t}{args.k}-{args.dist}{args.gamma}-{args.embraw}.pkl'
T_f, edges_cf_t1, edges_cf_t0, T_cf, adj_cf = load_t_files(args, T_file, logger, adj_train)
# get the factual node pairs
edges_f_t1 = np.asarray((sp.triu(T_f, 1) > 0).nonzero()).T
edges_f_t0 = np.asarray(sp.triu(T_f==0, 1).nonzero()).T
assert edges_f_t1.shape[0] + edges_f_t0.shape[0] == np.arange(adj_label.shape[0]).sum()
logger.info('Number of edges: F: t=1: {} t=0: {}, CF: t=1: {} t=0: {}'.format(
edges_f_t1.shape[0], edges_f_t0.shape[0], edges_cf_t1.shape[0], edges_cf_t0.shape[0]))
# get train_edges and train_edges_false
logger.info('...getting train splitting...')
trainsplit_dir_name = 'data/train_split/'
if not os.path.exists(trainsplit_dir_name):
os.makedirs(trainsplit_dir_name, exist_ok=True)
try:
train_edges, train_edges_false = pickle.load(open(f'{trainsplit_dir_name}{args.dataset}.pkl', 'rb'))
except:
train_edges = np.asarray(sp.triu(adj_train, 1).nonzero()).T
all_set = set([tuple(x) for x in train_pairs])
edge_set = set([tuple(x) for x in train_edges])
noedge_set = all_set - edge_set
train_edges_false = np.asarray(list(noedge_set))
pickle.dump((train_edges, train_edges_false), open(f'{trainsplit_dir_name}{args.dataset}.pkl', 'wb'))
assert train_edges.shape[0] + train_edges_false.shape[0] == train_pairs.shape[0]
logger.info(f'train_edges len: {train_edges.shape[0]}, batch size: {args.batch_size}')
logger.info('...finishing train splitting...')
max_neg_rate = train_edges_false.shape[0] // train_edges.shape[0] - 1
if args.neg_rate > max_neg_rate:
args.neg_rate = max_neg_rate
logger.info(f'negative rate change to: {max_neg_rate}')
val_pairs = np.concatenate((val_edges, val_edges_false), axis=0)
val_labels = np.concatenate((np.ones(val_edges.shape[0]), np.zeros(val_edges_false.shape[0])), axis=0)
test_pairs = np.concatenate((test_edges, test_edges_false), axis=0)
test_labels = np.concatenate((np.ones(test_edges.shape[0]), np.zeros(test_edges_false.shape[0])), axis=0)
# cast everything to proper type
adj_train_coo = adj_train.tocoo()
edge_index = np.concatenate((adj_train_coo.row[np.newaxis,:],adj_train_coo.col[np.newaxis,:]), axis=0)
adj_norm = torch_sparse.SparseTensor.from_edge_index(torch.LongTensor(edge_index))
# move everything to device
device = args.device
adj_norm = adj_norm.to(device)
T_f = torch.FloatTensor(T_f.toarray()).to(device)
T_cf = torch.FloatTensor(T_cf.toarray()).to(device)
T_f_val = T_f[val_pairs.T]
T_f_test = T_f[test_pairs.T]
adj_cf = torch.FloatTensor(adj_cf.toarray()).to(device)
features = features.to(device)
pos_w_f = torch.FloatTensor([args.neg_rate]).to(device)
model = CFLP(dim_feat, args.dim_h, args.dim_z, args.dropout, args.gnn_type, args.jk_mode, args.dec)
model = model.to(device)
optim = torch.optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.l2reg)
optims = MultipleOptimizer(args.lr_scheduler, optim)
logger.info(f'Using evaluation metric: {args.metric}')
best_val_res = 0.0
pretrained_params = None
cnt_wait = 0
for epoch in range(args.epochs):
total_examples = 0
total_loss = 0
for perm in DataLoader(range(train_edges.shape[0]), args.batch_size, shuffle=True):
# sample no_edges for this batch
pos_edges = train_edges[perm]
neg_sample_idx = np.random.choice(train_edges_false.shape[0], args.neg_rate * len(perm), replace=False)
neg_edges = train_edges_false[neg_sample_idx]
train_edges_batch = np.concatenate((pos_edges, neg_edges), axis=0)
# move things to device
labels_f_batch = torch.cat((torch.ones(pos_edges.shape[0]), torch.zeros(neg_edges.shape[0]))).to(device)
labels_cf_batch = adj_cf[train_edges_batch.T]
T_f_batch = T_f[train_edges_batch.T]
T_cf_batch = T_cf[train_edges_batch.T]
pos_w_cf = (labels_cf_batch.shape[0] - labels_cf_batch.sum()) / labels_cf_batch.sum()
model.train()
lr = optims.update_lr(args.lr)
optims.zero_grad()
# forward pass
z, logits_f, logits_cf = model(adj_norm, features, train_edges_batch, T_f_batch, T_cf_batch)
# loss
nodepairs_f, nodepairs_cf = sample_nodepairs(args.num_np, edges_f_t1, edges_f_t0, edges_cf_t1, edges_cf_t0)
loss_disc = calc_disc(args.disc_func, z, nodepairs_f, nodepairs_cf)
loss_f = F.binary_cross_entropy_with_logits(logits_f, labels_f_batch, pos_weight=pos_w_f)
loss_cf = F.binary_cross_entropy_with_logits(logits_cf, labels_cf_batch, pos_weight=pos_w_cf)
loss = loss_f + args.alpha * loss_cf + args.beta * loss_disc
#backward
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optims.step()
total_loss += loss.item() * pos_edges.shape[0]
total_examples += pos_edges.shape[0]
total_loss /= total_examples
#evaluation
model.eval()
with torch.no_grad():
z = model.encoder(adj_norm, features)
logits_val = model.decoder(z[val_pairs.T[0]], z[val_pairs.T[1]], T_f_val).detach().cpu()
logits_test = model.decoder(z[test_pairs.T[0]], z[test_pairs.T[1]], T_f_test).detach().cpu()
val_res = eval_ep_batched(logits_val, val_labels, val_edges.shape[0])
if val_res[args.metric] >= best_val_res:
cnt_wait = 0
best_val_res = val_res[args.metric]
pretrained_params = parameters_to_vector(model.parameters())
test_res = eval_ep_batched(logits_test, test_labels, test_edges.shape[0])
test_res['best_val'] = val_res[args.metric]
if args.verbose:
logger.info('Epoch {} Loss: {:.4f} lr: {:.4f} val: {:.4f} test: {:.4f}'.format(
epoch+1, total_loss, lr, val_res[args.metric], test_res[args.metric]))
else:
cnt_wait += 1
if args.verbose:
logger.info('Epoch {} Loss: {:.4f} lr: {:.4f} val: {:.4f}'.format(
epoch+1, total_loss, lr, val_res[args.metric]))
if cnt_wait >= args.patience:
if args.verbose:
print('Early stopping!')
break
"""Fine-tune"""
if args.epochs_ft:
optim_ft = torch.optim.Adam(model.decoder.parameters(),
lr=args.lr_ft,
weight_decay=args.l2reg)
vector_to_parameters(pretrained_params, model.parameters())
model.encoder.eval()
with torch.no_grad():
z = model.encoder(adj_norm, features).detach()
# best_val_res = 0.0
best_params = None
cnt_wait = 0
# model.decoder.reset_parameters()
for epoch in range(args.epochs_ft):
total_examples = 0
total_loss = 0
# sample no_edges for this epoch
for perm in DataLoader(range(train_edges.shape[0]), args.batch_size, shuffle=True):
pos_edges = train_edges[perm]
neg_sample_idx = np.random.choice(train_edges_false.shape[0], args.neg_rate * len(perm), replace=False)
neg_edges = train_edges_false[neg_sample_idx]
train_edges_batch = np.concatenate((pos_edges, neg_edges), axis=0)
labels_f_batch = torch.cat((torch.ones(pos_edges.shape[0]), torch.zeros(neg_edges.shape[0]))).to(device)
T_f_batch = T_f[train_edges_batch.T]
model.decoder.train()
optim_ft.zero_grad()
logits = model.decoder(z[train_edges_batch.T[0]], z[train_edges_batch.T[1]], T_f_batch)
loss = F.binary_cross_entropy_with_logits(logits, labels_f_batch, pos_weight=pos_w_f)
loss.backward()
optim_ft.step()
total_loss += loss.item() * pos_edges.shape[0]
total_examples += pos_edges.shape[0]
total_loss /= total_examples
model.decoder.eval()
with torch.no_grad():
logits_val = model.decoder(z[val_pairs.T[0]], z[val_pairs.T[1]], T_f_val).detach().cpu()
logits_test = model.decoder(z[test_pairs.T[0]], z[test_pairs.T[1]], T_f_test).detach().cpu()
val_res = eval_ep_batched(logits_val, val_labels, val_edges.shape[0])
if val_res[args.metric] > best_val_res:
cnt_wait = 0
best_val_res = val_res[args.metric]
best_params = parameters_to_vector(model.parameters())
test_res = eval_ep_batched(logits_test, test_labels, test_edges.shape[0])
test_res['best_val'] = val_res[args.metric]
if args.verbose:
logger.info('FT epoch {} loss: {:.4f} val: {:.4f} test: {:.4f}'.format(
epoch+1, total_loss, val_res[args.metric], test_res[args.metric]))
else:
cnt_wait += 1
if args.verbose:
logger.info('FT epoch {} loss: {:.4f} val: {:.4f}'.format(
epoch+1, total_loss, val_res[args.metric]))
if cnt_wait >= args.patience:
if args.verbose:
print('Early stopping!')
break
ate_dict = None
if args.cal_ate:
if best_params is not None:
vector_to_parameters(best_params, model.parameters())
model.decoder.eval()
with torch.no_grad():
all_pairs = np.concatenate((train_pairs, val_pairs, test_pairs), axis=0)
y_f_estimated = []
y_cf_estimated = []
for perm in DataLoader(range(all_pairs.shape[0]), args.batch_size):
perm_pairs = all_pairs[perm]
T_f_perm = T_f[perm_pairs.T]
T_cf_perm = 1 - T_f_perm
f_estimated = torch.sigmoid(model.decoder(z[perm_pairs.T[0]], z[perm_pairs.T[1]], T_f_perm))
cf_estimated = torch.sigmoid(model.decoder(z[perm_pairs.T[0]], z[perm_pairs.T[1]], T_cf_perm))
y_f_estimated.append(f_estimated.detach().cpu().numpy())
y_cf_estimated.append(cf_estimated.detach().cpu().numpy())
T_f_all = T_f[all_pairs.T].cpu().numpy()
y_f_estimated = np.concatenate(y_f_estimated, axis=None)
y_cf_estimated = np.concatenate(y_cf_estimated, axis=None)
ite_est = (2 * T_f_all - 1) * (y_f_estimated - y_cf_estimated)
y_f_ground = np.concatenate((np.ones(train_edges.shape[0]), np.zeros(train_edges_false.shape[0]), val_labels, test_labels))
y_cf_nns = adj_cf[all_pairs.T].cpu().numpy()
T_cf_all = T_cf[all_pairs.T].cpu().numpy()
effect_pairs = (T_f_all != T_cf_all)
ite_obs = (2 * T_f_all - 1) * (y_f_ground - y_cf_nns)
ate_obs = ite_obs[effect_pairs].mean()
ate_dict = {'ate_obs': ate_obs, 'ate_est': ite_est.mean()}
if ate_dict is not None:
test_res = {**test_res, **ate_dict}
return test_res
def main(args):
log_name = f'{args.log_dir}/{args.name}_{args.dataset}_{args.t}_{args.embraw}_{time.strftime("%m-%d_%H-%M")}'
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir, exist_ok=True)
logger = get_logger(log_name)
logger.info(f'Input argument vector: {args.argv[1:]}')
logger.info(f'args: {args}')
if args.cal_ate:
results = {'auc': [], 'ap': [], 'hits@20': [], 'hits@50': [], 'hits@100': [], 'best_val': [], 'ate_obs': [], 'ate_est': []}
else:
results = {'auc': [], 'ap': [], 'hits@20': [], 'hits@50': [], 'hits@100': [], 'best_val': []}
for _ in range(args.trails):
res = train(args, logger)
for metric in results.keys():
results[metric].append(res[metric])
logger.info('final results:')
for metric, nums in results.items():
logger.info('{}: {:.4f}+-{:.4f} {}'.format(
metric, np.mean(nums), np.std(nums), nums))
if __name__ == "__main__":
args = get_args()
main(args)