-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodels.py
133 lines (115 loc) · 4.51 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, SAGEConv, JumpingKnowledge
class CFLP(nn.Module):
def __init__(self, dim_feat, dim_h, dim_z, dropout, gnn_type='GCN', jk_mode='mean', dec='hadamard'):
super(CFLP, self).__init__()
gcn_num_layers = 3
self.encoder = GNN(dim_feat, dim_h, dim_z, dropout, gnn_type=gnn_type, num_layers = gcn_num_layers, jk_mode=jk_mode)
if jk_mode == 'cat':
dim_in = dim_h * (gcn_num_layers-1) + dim_z
else:
dim_in = dim_z
self.decoder = Decoder(dec, dim_in, dim_h=dim_h)
self.init_params()
def forward(self, adj, features, edges, T_f_batch, T_cf_batch):
z = self.encoder(adj, features)
z_i = z[edges.T[0]]
z_j = z[edges.T[1]]
logits_f = self.decoder(z_i, z_j, T_f_batch)
logits_cf = self.decoder(z_i, z_j, T_cf_batch)
return z, logits_f, logits_cf
def init_params(self):
self.encoder.reset_parameters()
self.decoder.reset_parameters()
class GNN(nn.Module):
def __init__(self, dim_feat, dim_h, dim_z, dropout, gnn_type='GCN', num_layers=3, jk_mode='mean', batchnorm=True):
super(GNN, self).__init__()
assert jk_mode in ['max','sum','mean','lstm','cat','none']
self.act = nn.ELU()
self.dropout = dropout
self.linear = torch.nn.Linear(dim_h, dim_z)
if gnn_type == 'SAGE':
gnnlayer = SAGEConv
elif gnn_type == 'GCN':
gnnlayer = GCNConv
self.convs = torch.nn.ModuleList()
self.convs.append(gnnlayer(dim_feat, dim_h))
for _ in range(num_layers - 2):
self.convs.append(gnnlayer(dim_h, dim_h))
self.convs.append(gnnlayer(dim_h, dim_z))
self.batchnorm = batchnorm
if self.batchnorm:
self.bns = torch.nn.ModuleList([torch.nn.BatchNorm1d(dim_h) for _ in range(num_layers)])
self.jk_mode = jk_mode
if self.jk_mode in ['max', 'lstm', 'cat']:
self.jk = JumpingKnowledge(mode=self.jk_mode, channels=dim_h, num_layers=num_layers)
elif self.jk_mode == 'mean':
self.weights = torch.nn.Parameter(torch.randn((len(self.convs))))
def forward(self, adj, features):
out = features
out_list = []
for i in range(len(self.convs)):
out = self.convs[i](out, adj)
if self.batchnorm:
out = self.bns[i](out)
out = self.act(out)
out = F.dropout(out, p=self.dropout, training=self.training)
out_list += [out]
if self.jk_mode in ['max', 'lstm', 'cat']:
out = self.jk(out_list)
elif self.jk_mode == 'mean':
sftmax = F.softmax(self.weights, dim=0)
for i in range(len(out_list)):
out_list[i] = out_list[i] * sftmax[i]
out = sum(out_list)
elif self.jk_mode == 'sum':
out_stack = torch.stack(out_list, dim=0)
out = torch.sum(out_stack, dim=0)
elif self.jk_mode == 'none':
out = out_list[-1]
return out
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
if self.batchnorm:
for bn in self.bns:
bn.reset_parameters()
if self.jk_mode in ['max', 'lstm', 'cat']:
self.jk.reset_parameters()
class Decoder(nn.Module):
def __init__(self, dec, dim_z, dim_h=64):
super(Decoder, self).__init__()
self.dec = dec
if dec == 'innerproduct':
dim_in = 2
elif dec == 'hadamard':
dim_in = dim_z + 1
elif dec == 'mlp':
dim_in = 1 + 2*dim_z
self.mlp_out = nn.Sequential(
nn.Linear(dim_in, dim_h, bias=True),
nn.ELU(),
nn.Dropout(),
nn.Linear(dim_h, 1, bias=False)
)
def forward(self, z_i, z_j, T):
if self.dec == 'innerproduct':
z = (z_i * z_j).sum(1).view(-1, 1)
h = torch.cat((z, T.view(-1, 1)), dim=1)
elif self.dec == 'mlp':
h = torch.cat((z_i, z_j, T.view(-1, 1)), dim=1)
elif self.dec == 'hadamard':
z = z_i * z_j
h = torch.cat((z, T.view(-1, 1)), dim=1)
h = self.mlp_out(h).squeeze()
return h
def reset_parameters(self):
for lin in self.mlp_out:
try:
lin.reset_parameters()
except:
continue